Abstract:This paper proposes an adaptive near-field beam training method to enhance performance in multi-user and multipath environments. The approach identifies multiple strongest beams through beam sweeping and linearly combines their received signals - capturing both amplitude and phase - for improved channel estimation. Two codebooks are considered: the conventional DFT codebook and a near-field codebook that samples both angular and distance domains. As the near-field basis functions are generally non-orthogonal and often over-complete, we exploit sparsity in the solution using LASSO-based linear regression, which can also suppress noise. Simulation results show that the near-field codebook reduces feedback overhead by up to 95% compared to the DFT codebook. The proposed LASSO regression method also maintains robustness under varying noise levels, particularly in low SNR regions. Furthermore, an off-grid refinement scheme is introduced to enhance accuracy especially when the codebook sampling is coarse, improving reconstruction accuracy by 69.4%.
Abstract:How can balance be quantified in game settings? This question is crucial for game designers, especially in player-versus-player (PvP) games, where analyzing the strength relations among predefined team compositions-such as hero combinations in multiplayer online battle arena (MOBA) games or decks in card games-is essential for enhancing gameplay and achieving balance. We have developed two advanced measures that extend beyond the simplistic win rate to quantify balance in zero-sum competitive scenarios. These measures are derived from win value estimations, which employ strength rating approximations via the Bradley-Terry model and counter relationship approximations via vector quantization, significantly reducing the computational complexity associated with traditional win value estimations. Throughout the learning process of these models, we identify useful categories of compositions and pinpoint their counter relationships, aligning with the experiences of human players without requiring specific game knowledge. Our methodology hinges on a simple technique to enhance codebook utilization in discrete representation with a deterministic vector quantization process for an extremely small state space. Our framework has been validated in popular online games, including Age of Empires II, Hearthstone, Brawl Stars, and League of Legends. The accuracy of the observed strength relations in these games is comparable to traditional pairwise win value predictions, while also offering a more manageable complexity for analysis. Ultimately, our findings contribute to a deeper understanding of PvP game dynamics and present a methodology that significantly improves game balance evaluation and design.