Abstract:Visual robustness and neural alignment remain critical challenges in developing artificial agents that can match biological vision systems. We present the winning approaches from Team HCMUS_TheFangs for both tracks of the NeurIPS 2025 Mouse vs. AI: Robust Visual Foraging Competition. For Track 1 (Visual Robustness), we demonstrate that architectural simplicity combined with targeted components yields superior generalization, achieving 95.4% final score with a lightweight two-layer CNN enhanced by Gated Linear Units and observation normalization. For Track 2 (Neural Alignment), we develop a deep ResNet-like architecture with 16 convolutional layers and GLU-based gating that achieves top-1 neural prediction performance with 17.8 million parameters. Our systematic analysis of ten model checkpoints trained between 60K to 1.14M steps reveals that training duration exhibits a non-monotonic relationship with performance, with optimal results achieved around 200K steps. Through comprehensive ablation studies and failure case analysis, we provide insights into why simpler architectures excel at visual robustness while deeper models with increased capacity achieve better neural alignment. Our results challenge conventional assumptions about model complexity in visuomotor learning and offer practical guidance for developing robust, biologically-inspired visual agents.
Abstract:As LLMs increasingly act as autonomous agents in interactive and multi-agent settings, understanding their strategic behavior is critical for safety, coordination, and AI-driven social and economic systems. We investigate how payoff magnitude and linguistic context shape LLM strategies in repeated social dilemmas, using a payoff-scaled Prisoner's Dilemma to isolate sensitivity to incentive strength. Across models and languages, we observe consistent behavioral patterns, including incentive-sensitive conditional strategies and cross-linguistic divergence. To interpret these dynamics, we train supervised classifiers on canonical repeated-game strategies and apply them to LLM decisions, revealing systematic, model- and language-dependent behavioral intentions, with linguistic framing sometimes matching or exceeding architectural effects. Our results provide a unified framework for auditing LLMs as strategic agents and highlight cooperation biases with direct implications for AI governance and multi-agent system design.
Abstract:Existing traffic simulation frameworks for autonomous vehicles typically rely on imitation learning or game-theoretic approaches that solve for Nash or coarse correlated equilibria, implicitly assuming perfectly rational agents. However, human drivers exhibit bounded rationality, making approximately optimal decisions under cognitive and perceptual constraints. We propose EvoQRE, a principled framework for modeling safety-critical traffic interactions as general-sum Markov games solved via Quantal Response Equilibrium (QRE) and evolutionary game dynamics. EvoQRE integrates a pre-trained generative world model with entropy-regularized replicator dynamics, capturing stochastic human behavior while maintaining equilibrium structure. We provide rigorous theoretical results, proving that the proposed dynamics converge to Logit-QRE under a two-timescale stochastic approximation with an explicit convergence rate of O(log k / k^{1/3}) under weak monotonicity assumptions. We further extend QRE to continuous action spaces using mixture-based and energy-based policy representations. Experiments on the Waymo Open Motion Dataset and nuPlan benchmark demonstrate that EvoQRE achieves state-of-the-art realism, improved safety metrics, and controllable generation of diverse safety-critical scenarios through interpretable rationality parameters.
Abstract:As Large Language Models (LLMs) increasingly operate as autonomous decision-makers in interactive and multi-agent systems and human societies, understanding their strategic behaviour has profound implications for safety, coordination, and the design of AI-driven social and economic infrastructures. Assessing such behaviour requires methods that capture not only what LLMs output, but the underlying intentions that guide their decisions. In this work, we extend the FAIRGAME framework to systematically evaluate LLM behaviour in repeated social dilemmas through two complementary advances: a payoff-scaled Prisoners Dilemma isolating sensitivity to incentive magnitude, and an integrated multi-agent Public Goods Game with dynamic payoffs and multi-agent histories. These environments reveal consistent behavioural signatures across models and languages, including incentive-sensitive cooperation, cross-linguistic divergence and end-game alignment toward defection. To interpret these patterns, we train traditional supervised classification models on canonical repeated-game strategies and apply them to FAIRGAME trajectories, showing that LLMs exhibit systematic, model- and language-dependent behavioural intentions, with linguistic framing at times exerting effects as strong as architectural differences. Together, these findings provide a unified methodological foundation for auditing LLMs as strategic agents and reveal systematic cooperation biases with direct implications for AI governance, collective decision-making, and the design of safe multi-agent systems.