Abstract:Visual robustness and neural alignment remain critical challenges in developing artificial agents that can match biological vision systems. We present the winning approaches from Team HCMUS_TheFangs for both tracks of the NeurIPS 2025 Mouse vs. AI: Robust Visual Foraging Competition. For Track 1 (Visual Robustness), we demonstrate that architectural simplicity combined with targeted components yields superior generalization, achieving 95.4% final score with a lightweight two-layer CNN enhanced by Gated Linear Units and observation normalization. For Track 2 (Neural Alignment), we develop a deep ResNet-like architecture with 16 convolutional layers and GLU-based gating that achieves top-1 neural prediction performance with 17.8 million parameters. Our systematic analysis of ten model checkpoints trained between 60K to 1.14M steps reveals that training duration exhibits a non-monotonic relationship with performance, with optimal results achieved around 200K steps. Through comprehensive ablation studies and failure case analysis, we provide insights into why simpler architectures excel at visual robustness while deeper models with increased capacity achieve better neural alignment. Our results challenge conventional assumptions about model complexity in visuomotor learning and offer practical guidance for developing robust, biologically-inspired visual agents.
Abstract:Existing traffic simulation frameworks for autonomous vehicles typically rely on imitation learning or game-theoretic approaches that solve for Nash or coarse correlated equilibria, implicitly assuming perfectly rational agents. However, human drivers exhibit bounded rationality, making approximately optimal decisions under cognitive and perceptual constraints. We propose EvoQRE, a principled framework for modeling safety-critical traffic interactions as general-sum Markov games solved via Quantal Response Equilibrium (QRE) and evolutionary game dynamics. EvoQRE integrates a pre-trained generative world model with entropy-regularized replicator dynamics, capturing stochastic human behavior while maintaining equilibrium structure. We provide rigorous theoretical results, proving that the proposed dynamics converge to Logit-QRE under a two-timescale stochastic approximation with an explicit convergence rate of O(log k / k^{1/3}) under weak monotonicity assumptions. We further extend QRE to continuous action spaces using mixture-based and energy-based policy representations. Experiments on the Waymo Open Motion Dataset and nuPlan benchmark demonstrate that EvoQRE achieves state-of-the-art realism, improved safety metrics, and controllable generation of diverse safety-critical scenarios through interpretable rationality parameters.
Abstract:Retrieving images from natural language descriptions is a core task at the intersection of computer vision and natural language processing, with wide-ranging applications in search engines, media archiving, and digital content management. However, real-world image-text retrieval remains challenging due to vague or context-dependent queries, linguistic variability, and the need for scalable solutions. In this work, we propose a lightweight two-stage retrieval pipeline that leverages event-centric entity extraction to incorporate temporal and contextual signals from real-world captions. The first stage performs efficient candidate filtering using BM25 based on salient entities, while the second stage applies BEiT-3 models to capture deep multimodal semantics and rerank the results. Evaluated on the OpenEvents v1 benchmark, our method achieves a mean average precision of 0.559, substantially outperforming prior baselines. These results highlight the effectiveness of combining event-guided filtering with long-text vision-language modeling for accurate and efficient retrieval in complex, real-world scenarios. Our code is available at https://github.com/PhamPhuHoa-23/Event-Based-Image-Retrieval
Abstract:As Large Language Models (LLMs) increasingly operate as autonomous decision-makers in interactive and multi-agent systems and human societies, understanding their strategic behaviour has profound implications for safety, coordination, and the design of AI-driven social and economic infrastructures. Assessing such behaviour requires methods that capture not only what LLMs output, but the underlying intentions that guide their decisions. In this work, we extend the FAIRGAME framework to systematically evaluate LLM behaviour in repeated social dilemmas through two complementary advances: a payoff-scaled Prisoners Dilemma isolating sensitivity to incentive magnitude, and an integrated multi-agent Public Goods Game with dynamic payoffs and multi-agent histories. These environments reveal consistent behavioural signatures across models and languages, including incentive-sensitive cooperation, cross-linguistic divergence and end-game alignment toward defection. To interpret these patterns, we train traditional supervised classification models on canonical repeated-game strategies and apply them to FAIRGAME trajectories, showing that LLMs exhibit systematic, model- and language-dependent behavioural intentions, with linguistic framing at times exerting effects as strong as architectural differences. Together, these findings provide a unified methodological foundation for auditing LLMs as strategic agents and reveal systematic cooperation biases with direct implications for AI governance, collective decision-making, and the design of safe multi-agent systems.
Abstract:Recent 3D retrieval systems are typically designed for simple, controlled scenarios, such as identifying an object from a cropped image or a brief description. However, real-world scenarios are more complex, often requiring the recognition of an object in a cluttered scene based on a vague, free-form description. To this end, we present ROOMELSA, a new benchmark designed to evaluate a system's ability to interpret natural language. Specifically, ROOMELSA attends to a specific region within a panoramic room image and accurately retrieves the corresponding 3D model from a large database. In addition, ROOMELSA includes over 1,600 apartment scenes, nearly 5,200 rooms, and more than 44,000 targeted queries. Empirically, while coarse object retrieval is largely solved, only one top-performing model consistently ranked the correct match first across nearly all test cases. Notably, a lightweight CLIP-based model also performed well, although it struggled with subtle variations in materials, part structures, and contextual cues, resulting in occasional errors. These findings highlight the importance of tightly integrating visual and language understanding. By bridging the gap between scene-level grounding and fine-grained 3D retrieval, ROOMELSA establishes a new benchmark for advancing robust, real-world 3D recognition systems.