Abstract:As LLMs increasingly act as autonomous agents in interactive and multi-agent settings, understanding their strategic behavior is critical for safety, coordination, and AI-driven social and economic systems. We investigate how payoff magnitude and linguistic context shape LLM strategies in repeated social dilemmas, using a payoff-scaled Prisoner's Dilemma to isolate sensitivity to incentive strength. Across models and languages, we observe consistent behavioral patterns, including incentive-sensitive conditional strategies and cross-linguistic divergence. To interpret these dynamics, we train supervised classifiers on canonical repeated-game strategies and apply them to LLM decisions, revealing systematic, model- and language-dependent behavioral intentions, with linguistic framing sometimes matching or exceeding architectural effects. Our results provide a unified framework for auditing LLMs as strategic agents and highlight cooperation biases with direct implications for AI governance and multi-agent system design.
Abstract:Real-world image captions often lack contextual depth, omitting crucial details such as event background, temporal cues, outcomes, and named entities that are not visually discernible. This gap limits the effectiveness of image understanding in domains like journalism, education, and digital archives, where richer, more informative descriptions are essential. To address this, we propose a multimodal pipeline that augments visual input with external textual knowledge. Our system retrieves semantically similar images using BEIT-3 (Flickr30k-384 and COCO-384) and SigLIP So-384, reranks them using ORB and SIFT for geometric alignment, and extracts contextual information from related articles via semantic search. A fine-tuned Qwen3 model with QLoRA then integrates this context with base captions generated by Instruct BLIP (Vicuna-7B) to produce event-enriched, context-aware descriptions. Evaluated on the OpenEvents v1 dataset, our approach generates significantly more informative captions compared to traditional methods, showing strong potential for real-world applications requiring deeper visual-textual understanding