Abstract:Digital Humanities (DH) is an interdisciplinary field that integrates computational methods with humanities scholarship to investigate innovative topics. Each academic discipline follows a unique developmental path shaped by the topics researchers investigate and the methods they employ. With the help of bibliometric analysis, most of previous studies have examined DH across multiple dimensions such as research hotspots, co-author networks, and institutional rankings. However, these studies have often been limited in their ability to provide deep insights into the current state of technological advancements and topic development in DH. As a result, their conclusions tend to remain superficial or lack interpretability in understanding how methods and topics interrelate in the field. To address this gap, this study introduced a new concept of Topic-Method Composition (TMC), which refers to a hybrid knowledge structure generated by the co-occurrence of specific research topics and the corresponding method. Especially by analyzing the interaction between TMCs, we can see more clearly the intersection and integration of digital technology and humanistic subjects in DH. Moreover, this study developed a TMC-based workflow combining bibliometric analysis, topic modeling, and network analysis to analyze the development characteristics and patterns of research disciplines. By applying this workflow to large-scale bibliometric data, it enables a detailed view of the knowledge structures, providing a tool adaptable to other fields.
Abstract:Considering the lack of a unified framework for image description and deep cultural analysis at the subject level in the field of Ancient Chinese Paintings (ACP), this study utilized the Beijing Palace Museum's ACP collections to develop a semantic model integrating the iconological theory with a new workflow for term extraction and mapping. Our findings underscore the model's effectiveness. SDM can be used to support further art-related knowledge organization and cultural exploration of ACPs.