Abstract:Extensive experiments and prior studies show that no single maximum clique algorithm consistently performs best across all instances, highlighting the importance of selecting suitable algorithms based on instance features. Through an extensive analysis of relevant studies, it is found that there is a lack of research work concerning algorithm selection oriented toward the Maximum Clique Problem (MCP). In this work, we propose a learning-based framework that integrates both traditional machine learning and graph neural networks to address this gap. We construct a labeled dataset by running four exact MCP algorithms on a diverse collection of graph instances, accompanied by structural and global statistical features extracted from each graph. We first evaluate four conventional classifiers: Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and K-Nearest Neighbors (KNN), across multiple dataset variants. Experimental results show that RF consistently shows strong performance across metrics and dataset variants, making it a reliable baseline. In addition, feature importance analysis indicates that connectivity and topological structure are strong predictors of algorithm performance. Building on these findings, we develop a dual-channel model named GAT-MLP, which combines a Graph Attention Network (GAT) for local structural encoding with a Multilayer Perceptron (MLP) for global feature modeling. The GAT-MLP model shows strong and consistent performance across all metrics. Our results highlight the effectiveness of dual-channel architectures and the promise of graph neural networks in combinatorial algorithm selection.
Abstract:High-level synthesis (HLS) design space exploration (DSE) is an optimization process in electronic design automation (EDA) that systematically explores high-level design configurations to achieve Pareto-optimal hardware implementations balancing performance, area, and power (PPA). To optimize this process, HLS prediction tasks often employ message-passing neural networks (MPNNs), leveraging complex architectures to achieve high accuracy. These predictors serve as evaluators in the DSE process, effectively bypassing the time-consuming estimations traditionally required by HLS tools. However, existing models often prioritize structural complexity and minimization of training loss, overlooking task-specific characteristics. Additionally, while evolutionary algorithms are widely used in DSE, they typically require extensive domain-specific knowledge to design effective crossover and mutation operators. To address these limitations, we propose CoGNNs-LLMEA, a framework that integrates a graph neural network with task-adaptive message passing and a large language model-enhanced evolutionary algorithm. As a predictive model, CoGNNs directly leverages intermediate representations generated from source code after compiler front-end processing, enabling prediction of quality of results (QoR) without invoking HLS tools. Due to its strong adaptability to tasks, CoGNNs can be tuned to predict post-HLS and post-implementation outcomes, effectively bridging the gap between high-level abstractions and physical implementation characteristics. CoGNNs achieves state-of-the-art prediction accuracy in post-HLS QoR prediction, reducing mean prediction errors by 2.8$\times$ for latency and 3.4$\times$ for resource utilization compared to baseline models.