Abstract:The proliferation of misinformation in digital platforms reveals the limitations of traditional detection methods, which mostly rely on static classification and fail to capture the intricate process of real-world fact-checking. Despite advancements in Large Language Models (LLMs) that enhance automated reasoning, their application to misinformation detection remains hindered by issues of logical inconsistency and superficial verification. In response, we introduce Debate-to-Detect (D2D), a novel Multi-Agent Debate (MAD) framework that reformulates misinformation detection as a structured adversarial debate. Inspired by fact-checking workflows, D2D assigns domain-specific profiles to each agent and orchestrates a five-stage debate process, including Opening Statement, Rebuttal, Free Debate, Closing Statement, and Judgment. To transcend traditional binary classification, D2D introduces a multi-dimensional evaluation mechanism that assesses each claim across five distinct dimensions: Factuality, Source Reliability, Reasoning Quality, Clarity, and Ethics. Experiments with GPT-4o on two fakenews datasets demonstrate significant improvements over baseline methods, and the case study highlight D2D's capability to iteratively refine evidence while improving decision transparency, representing a substantial advancement towards robust and interpretable misinformation detection. The code will be open-sourced in a future release.
Abstract:Continuous monitoring and in-situ assessment of microvascular connectivity have significant implications for culturing vascularized organoids and optimizing the therapeutic strategies. However, commonly used methods for vascular connectivity assessment heavily rely on fluorescent labels that may either raise biocompatibility concerns or interrupt the normal cell growth process. To address this issue, a Vessel Connectivity Network (VC-Net) was developed for label-free assessment of vascular connectivity. To validate the VC-Net, microvascular networks (MVNs) were cultured in vitro and their microscopic images were acquired at different culturing conditions as a training dataset. The VC-Net employs a Vessel Queue Contrastive Learning (VQCL) method and a class imbalance algorithm to address the issues of limited sample size, indistinctive class features and imbalanced class distribution in the dataset. The VC-Net successfully evaluated the vascular connectivity with no significant deviation from that by fluorescence imaging. In addition, the proposed VC-Net successfully differentiated the connectivity characteristics between normal and tumor-related MVNs. In comparison with those cultured in the regular microenvironment, the averaged connectivity of MVNs cultured in the tumor-related microenvironment decreased by 30.8%, whereas the non-connected area increased by 37.3%. This study provides a new avenue for label-free and continuous assessment of organoid or tumor vascularization in vitro.
Abstract:This research reports VascularPilot3D, the first 3D fully autonomous endovascular robot navigation system. As an exploration toward autonomous guidewire navigation, VascularPilot3D is developed as a complete navigation system based on intra-operative imaging systems (fluoroscopic X-ray in this study) and typical endovascular robots. VascularPilot3D adopts previously researched fast 3D-2D vessel registration algorithms and guidewire segmentation methods as its perception modules. We additionally propose three modules: a topology-constrained 2D-3D instrument end-point lifting method, a tree-based fast path planning algorithm, and a prior-free endovascular navigation strategy. VascularPilot3D is compatible with most mainstream endovascular robots. Ex-vivo experiments validate that VascularPilot3D achieves 100% success rate among 25 trials. It reduces the human surgeon's overall control loops by 18.38%. VascularPilot3D is promising for general clinical autonomous endovascular navigations.