Abstract:Implantable brain-machine interfaces (iBMIs) are evolving to record from thousands of neurons wirelessly but face challenges in data bandwidth, power consumption, and implant size. We propose a novel Spiking Neural Network Spike Detector (SNN-SPD) that processes event-based neural data generated via delta modulation and pulse count modulation, converting signals into sparse events. By leveraging the temporal dynamics and inherent sparsity of spiking neural networks, our method improves spike detection performance while maintaining low computational overhead suitable for implantable devices. Our experimental results demonstrate that the proposed SNN-SPD achieves an accuracy of 95.72% at high noise levels (standard deviation 0.2), which is about 2% higher than the existing Artificial Neural Network Spike Detector (ANN-SPD). Moreover, SNN-SPD requires only 0.41% of the computation and about 26.62% of the weight parameters compared to ANN-SPD, with zero multiplications. This approach balances efficiency and performance, enabling effective data compression and power savings for next-generation iBMIs.
Abstract:The implementation of Hyperdimensional Computing (HDC) on In-Memory Computing (IMC) architectures faces significant challenges due to the mismatch between highdimensional vectors and IMC array sizes, leading to inefficient memory utilization and increased computation cycles. This paper presents MEMHD, a Memory-Efficient Multi-centroid HDC framework designed to address these challenges. MEMHD introduces a clustering-based initialization method and quantization aware iterative learning for multi-centroid associative memory. Through these approaches and its overall architecture, MEMHD achieves a significant reduction in memory requirements while maintaining or improving classification accuracy. Our approach achieves full utilization of IMC arrays and enables one-shot (or few-shot) associative search. Experimental results demonstrate that MEMHD outperforms state-of-the-art binary HDC models, achieving up to 13.69% higher accuracy with the same memory usage, or 13.25x more memory efficiency at the same accuracy level. Moreover, MEMHD reduces computation cycles by up to 80x and array usage by up to 71x compared to baseline IMC mapping methods when mapped to 128x128 IMC arrays, while significantly improving energy and computation cycle efficiency.