Abstract:Large Language Models (LLMs) have demonstrated notable capabilities across financial tasks, including financial report summarization, earnings call transcript analysis, and asset classification. However, their real-world effectiveness in managing complex fund investment remains inadequately assessed. A fundamental limitation of existing benchmarks for evaluating LLM-driven trading strategies is their reliance on historical back-testing, inadvertently enabling LLMs to "time travel"-leveraging future information embedded in their training corpora, thus resulting in possible information leakage and overly optimistic performance estimates. To address this issue, we introduce DeepFund, a live fund benchmark tool designed to rigorously evaluate LLM in real-time market conditions. Utilizing a multi-agent architecture, DeepFund connects directly with real-time stock market data-specifically data published after each model pretraining cutoff-to ensure fair and leakage-free evaluations. Empirical tests on nine flagship LLMs from leading global institutions across multiple investment dimensions-including ticker-level analysis, investment decision-making, portfolio management, and risk control-reveal significant practical challenges. Notably, even cutting-edge models such as DeepSeek-V3 and Claude-3.7-Sonnet incur net trading losses within DeepFund real-time evaluation environment, underscoring the present limitations of LLMs for active fund management. Our code is available at https://github.com/HKUSTDial/DeepFund.
Abstract:Missing value is a critical issue in data science, significantly impacting the reliability of analyses and predictions. Missing value imputation (MVI) is a longstanding problem because it highly relies on domain knowledge. Large language models (LLMs) have emerged as a promising tool for data cleaning, including MVI for tabular data, offering advanced capabilities for understanding and generating content. However, despite their promise, existing LLM techniques such as in-context learning and Chain-of-Thought (CoT) often fall short in guiding LLMs to perform complex reasoning for MVI, particularly when imputing derived missing values, which require mathematical formulas and data relationships across rows and columns. This gap underscores the need for further advancements in LLM methodologies to enhance their reasoning capabilities for more reliable imputation outcomes. To fill this gap, we propose SketchFill, a novel sketch-based method to guide LLMs in generating accurate formulas to impute missing numerical values. Our experimental results demonstrate that SketchFill significantly outperforms state-of-the-art methods, achieving 56.2% higher accuracy than CoT-based methods and 78.8% higher accuracy than MetaGPT. This sets a new standard for automated data cleaning and advances the field of MVI for numerical values.