Abstract:Segmenting a moving needle in ultrasound images is challenging due to the presence of artifacts, noise, and needle occlusion. This task becomes even more demanding in scenarios where data availability is limited. Convolutional Neural Networks (CNNs) have been successful in many computer vision applications, but struggle to accurately segment needles without considering their motion. In this paper, we present a novel approach for needle segmentation that combines classical Kalman Filter (KF) techniques with data-driven learning, incorporating both needle features and needle motion. Our method offers two key contributions. First, we propose a compatible framework that seamlessly integrates into commonly used encoder-decoder style architectures. Second, we demonstrate superior performance compared to recent state-of-the-art needle segmentation models using our novel convolutional neural network (CNN) based KF-inspired block, achieving a 15\% reduction in pixel-wise needle tip error and an 8\% reduction in length error. Third, to our knowledge we are the first to implement a learnable filter to incorporate non-linear needle motion for improving needle segmentation.
Abstract:Robot-guided catheter insertion has the potential to deliver urgent medical care in situations where medical personnel are unavailable. However, this technique requires accurate and reliable segmentation of anatomical landmarks in the body. For the ultrasound imaging modality, obtaining large amounts of training data for a segmentation model is time-consuming and expensive. This paper introduces RESUS (RESlicing of UltraSound Images), a weak supervision data augmentation technique for ultrasound images based on slicing reconstructed 3D volumes from tracked 2D images. This technique allows us to generate views which cannot be easily obtained in vivo due to physical constraints of ultrasound imaging, and use these augmented ultrasound images to train a semantic segmentation model. We demonstrate that RESUS achieves statistically significant improvement over training with non-augmented images and highlight qualitative improvements through vessel reconstruction.