Abstract:Online medical literature has made health information more available than ever, however, the barrier of complex medical jargon prevents the general public from understanding it. Though parallel and comparable corpora for Biomedical Text Simplification have been introduced, these conflate the many syntactic and lexical operations involved in simplification. To enable more targeted development and evaluation, we present a fine-grained lexical simplification task and dataset, Jargon Explanations for Biomedical Simplification (JEBS, https://github.com/bill-from-ri/JEBS-data ). The JEBS task involves identifying complex terms, classifying how to replace them, and generating replacement text. The JEBS dataset contains 21,595 replacements for 10,314 terms across 400 biomedical abstracts and their manually simplified versions. Additionally, we provide baseline results for a variety of rule-based and transformer-based systems for the three sub-tasks. The JEBS task, data, and baseline results pave the way for development and rigorous evaluation of systems for replacing or explaining complex biomedical terms.
Abstract:While many dashboards for visualizing COVID-19 data exist, most separate geospatial and temporal data into discrete visualizations or tables. Further, the common use of choropleth maps or space-filling map overlays supports only a single geospatial variable at once, making it difficult to compare the temporal and geospatial trends of multiple, potentially interacting variables, such as active cases, deaths, and vaccinations. We present CoronaViz, a COVID-19 visualization system that conveys multilayer, spatiotemporal data in a single, interactive display. CoronaViz encodes variables with concentric, hollow circles, termed geocircles, allowing multiple variables via color encoding and avoiding occlusion problems. The radii of geocircles relate to the values of the variables they represent via the psychophysically determined Flannery formula. The time dimension of spatiotemporal variables is encoded with sequential rendering. Animation controls allow the user to seek through time manually or to view the pandemic unfolding in accelerated time. An adjustable time window allows aggregation at any granularity, from single days to cumulative values for the entire available range. In addition to describing the CoronaViz system, we report findings from a user study comparing CoronaViz with multi-view dashboards from the New York Times and Johns Hopkins University. While participants preferred using the latter two dashboards to perform queries with only a geospatial component or only a temporal component, participants uniformly preferred CoronaViz for queries with both spatial and temporal components, highlighting the utility of a unified spatiotemporal encoding. CoronaViz is open-source and freely available at http://coronaviz.umiacs.io.