Abstract:Synthetic data is a core component of data-efficient Dyna-style model-based reinforcement learning, yet it can also degrade performance. We study when it helps, where it fails, and why, and we show that addressing the resulting failure modes enables policy improvement that was previously unattainable. We focus on Model-Based Policy Optimization (MBPO), which performs actor and critic updates using synthetic action counterfactuals. Despite reports of strong and generalizable sample-efficiency gains in OpenAI Gym, recent work shows that MBPO often underperforms its model-free counterpart, Soft Actor-Critic (SAC), in the DeepMind Control Suite (DMC). Although both suites involve continuous control with proprioceptive robots, this shift leads to sharp performance losses across seven challenging DMC tasks, with MBPO failing in cases where claims of generalization from Gym would imply success. This reveals how environment-specific assumptions can become implicitly encoded into algorithm design when evaluation is limited. We identify two coupled issues behind these failures: scale mismatches between dynamics and reward models that induce critic underestimation and hinder policy improvement during model-policy coevolution, and a poor choice of target representation that inflates model variance and produces error-prone rollouts. Addressing these failure modes enables policy improvement where none was previously possible, allowing MBPO to outperform SAC in five of seven tasks while preserving the strong performance previously reported in OpenAI Gym. Rather than aiming only for incremental average gains, we hope our findings motivate the community to develop taxonomies that tie MDP task- and environment-level structure to algorithmic failure modes, pursue unified solutions where possible, and clarify how benchmark choices ultimately shape the conditions under which algorithms generalize.
Abstract:Out-of-distribution (OOD) detection is essential for reliable deployment of machine learning systems in vision, robotics, reinforcement learning, and beyond. We introduce Score-Curvature Out-of-distribution Proximity Evaluator for Diffusion (SCOPED), a fast and general-purpose OOD detection method for diffusion models that reduces the number of forward passes on the trained model by an order of magnitude compared to prior methods, outperforming most diffusion-based baselines and closely approaching the accuracy of the strongest ones. SCOPED is computed from a single diffusion model trained once on a diverse dataset, and combines the Jacobian trace and squared norm of the model's score function into a single test statistic. Rather than thresholding on a fixed value, we estimate the in-distribution density of SCOPED scores using kernel density estimation, enabling a flexible, unsupervised test that, in the simplest case, only requires a single forward pass and one Jacobian-vector product (JVP), made efficient by Hutchinson's trace estimator. On four vision benchmarks, SCOPED achieves competitive or state-of-the-art precision-recall scores despite its low computational cost. The same method generalizes to robotic control tasks with shared state and action spaces, identifying distribution shifts across reward functions and training regimes. These results position SCOPED as a practical foundation for fast and reliable OOD detection in real-world domains, including perceptual artifacts in vision, outlier detection in autoregressive models, exploration in reinforcement learning, and dataset curation for unsupervised training.
Abstract:Dyna-style off-policy model-based reinforcement learning (DMBRL) algorithms are a family of techniques for generating synthetic state transition data and thereby enhancing the sample efficiency of off-policy RL algorithms. This paper identifies and investigates a surprising performance gap observed when applying DMBRL algorithms across different benchmark environments with proprioceptive observations. We show that, while DMBRL algorithms perform well in OpenAI Gym, their performance can drop significantly in DeepMind Control Suite (DMC), even though these settings offer similar tasks and identical physics backends. Modern techniques designed to address several key issues that arise in these settings do not provide a consistent improvement across all environments, and overall our results show that adding synthetic rollouts to the training process -- the backbone of Dyna-style algorithms -- significantly degrades performance across most DMC environments. Our findings contribute to a deeper understanding of several fundamental challenges in model-based RL and show that, like many optimization fields, there is no free lunch when evaluating performance across diverse benchmarks in RL.
Abstract:One of the fundamental challenges associated with reinforcement learning (RL) is that collecting sufficient data can be both time-consuming and expensive. In this paper, we formalize a concept of time reversal symmetry in a Markov decision process (MDP), which builds upon the established structure of dynamically reversible Markov chains (DRMCs) and time-reversibility in classical physics. Specifically, we investigate the utility of this concept in reducing the sample complexity of reinforcement learning. We observe that utilizing the structure of time reversal in an MDP allows every environment transition experienced by an agent to be transformed into a feasible reverse-time transition, effectively doubling the number of experiences in the environment. To test the usefulness of this newly synthesized data, we develop a novel approach called time symmetric data augmentation (TSDA) and investigate its application in both proprioceptive and pixel-based state within the realm of off-policy, model-free RL. Empirical evaluations showcase how these synthetic transitions can enhance the sample efficiency of RL agents in time reversible scenarios without friction or contact. We also test this method in more realistic environments where these assumptions are not globally satisfied. We find that TSDA can significantly degrade sample efficiency and policy performance, but can also improve sample efficiency under the right conditions. Ultimately we conclude that time symmetry shows promise in enhancing the sample efficiency of reinforcement learning and provide guidance when the environment and reward structures are of an appropriate form for TSDA to be employed effectively.