Abstract:Verifiers -- functions assigning rewards to agent behavior -- have been key for AI progress in domains like math and board games. However, extending these gains to domains without clear-cut success criteria (e.g.,computer use) remains a challenge: while humans can recognize suitable outcomes, translating this intuition into scalable rules is non-trivial. Multimodal Large Language Models(MLLMs) emerge as a promising solution, given their world knowledge, human-preference alignment, and reasoning skills. We evaluate MLLMs as verifiers of agent trajectories across web navigation, computer use, and robotic manipulation, and identify a critical limitation: agreement bias, a strong tendency for MLLMs to favor information in their context window, often generating chains of thought to rationalize flawed behavior. This bias is pervasive across models, resilient to test-time scaling, and can impact several methods using MLLMs as evaluators (e.g.,data filtering). Notably, it occurs despite MLLMs showing strong, human-aligned priors on desired behavior. To address this, we propose Self-Grounded Verification (SGV), a lightweight method that enables more effective use of MLLMs' knowledge and reasoning by harnessing their own sampling mechanisms via unconditional and conditional generation. SGV operates in two steps: first, the MLLM is elicited to retrieve broad priors about task completion, independent of the data under evaluation. Then, conditioned on self-generated priors, it reasons over and evaluates a candidate trajectory. Enhanced with SGV, MLLM verifiers show gains of up to 20 points in accuracy and failure detection rates, and can perform real-time supervision of heterogeneous agents, boosting task completion of a GUI specialist in OSWorld, a diffusion policy in robomimic, and a ReAct agent in VisualWebArena -- setting a new state of the art on the benchmark, surpassing the previous best by 48%.
Abstract:In fast-paced, ever-changing environments, dynamic Motion Planning for Multi-Agent Systems in the presence of obstacles is a universal and unsolved problem. Be it from path planning around obstacles to the movement of robotic arms, or in planning navigation of robot teams in settings such as Robosoccer, dynamic motion planning is needed to avoid collisions while reaching the targeted destination when multiple agents occupy the same area. In continuous domains where the world changes quickly, existing classical Motion Planning algorithms such as RRT* and A* become computationally expensive to rerun at every time step. Many variations of classical and well-formulated non-learning path-planning methods have been proposed to solve this universal problem but fall short due to their limitations of speed, smoothness, optimally, etc. Deep Learning models overcome their challenges due to their ability to adapt to varying environments based on past experience. However, current learning motion planning models use discretized environments, do not account for heterogeneous agents or replanning, and build up to improve the classical motion planners' efficiency, leading to issues with scalability. To prevent collisions between heterogenous team members and collision to obstacles while trying to reach the target location, we present a learning-based dynamic navigation model and show our model working on a simple environment in the concept of a simple Robosoccer Game.