Abstract:Generative modeling has recently achieved remarkable success across image, video, and audio domains, demonstrating powerful capabilities for unified representation learning. Yet speech front-end tasks such as speech enhancement (SE), target speaker extraction (TSE), acoustic echo cancellation (AEC), and language-queried source separation (LASS) remain largely tackled by disparate, task-specific solutions. This fragmentation leads to redundant engineering effort, inconsistent performance, and limited extensibility. To address this gap, we introduce UniFlow, a unified framework that employs continuous generative modeling to tackle diverse speech front-end tasks in a shared latent space. Specifically, UniFlow utilizes a waveform variational autoencoder (VAE) to learn a compact latent representation of raw audio, coupled with a Diffusion Transformer (DiT) that predicts latent updates. To differentiate the speech processing task during the training, learnable condition embeddings indexed by a task ID are employed to enable maximal parameter sharing while preserving task-specific adaptability. To balance model performance and computational efficiency, we investigate and compare three generative objectives: denoising diffusion, flow matching, and mean flow within the latent domain. We validate UniFlow on multiple public benchmarks, demonstrating consistent gains over state-of-the-art baselines. UniFlow's unified latent formulation and conditional design make it readily extensible to new tasks, providing an integrated foundation for building and scaling generative speech processing pipelines. To foster future research, we will open-source our codebase.
Abstract:In recent years, neural networks (NNs) have been widely applied in acoustic echo cancellation (AEC). However, existing approaches struggle to meet real-world low-latency and computational requirements while maintaining performance. To address this challenge, we propose EchoFree, an ultra lightweight neural AEC framework that combines linear filtering with a neural post filter. Specifically, we design a neural post-filter operating on Bark-scale spectral features. Furthermore, we introduce a two-stage optimization strategy utilizing self-supervised learning (SSL) models to improve model performance. We evaluate our method on the blind test set of the ICASSP 2023 AEC Challenge. The results demonstrate that our model, with only 278K parameters and 30 MMACs computational complexity, outperforms existing low-complexity AEC models and achieves performance comparable to that of state-of-the-art lightweight model DeepVQE-S. The audio examples are available.