Abstract:The integration of simultaneous wireless information and power transfer (SWIPT) technology in 6G Internet of Things (IoT) networks faces significant challenges in remote areas and disaster scenarios where ground infrastructure is unavailable. This paper proposes a novel unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) system enhanced by directional antennas to provide both computational resources and energy support for ground IoT terminals. However, such systems require multiple trade-off policies to balance UAV energy consumption, terminal battery levels, and computational resource allocation under various constraints, including limited UAV battery capacity, non-linear energy harvesting characteristics, and dynamic task arrivals. To address these challenges comprehensively, we formulate a bi-objective optimization problem that simultaneously considers system energy efficiency and terminal battery sustainability. We then reformulate this non-convex problem with a hybrid solution space as a Markov decision process (MDP) and propose an improved soft actor-critic (SAC) algorithm with an action simplification mechanism to enhance its convergence and generalization capabilities. Simulation results have demonstrated that our proposed approach outperforms various baselines in different scenarios, achieving efficient energy management while maintaining high computational performance. Furthermore, our method shows strong generalization ability across different scenarios, particularly in complex environments, validating the effectiveness of our designed boundary penalty and charging reward mechanisms.
Abstract:Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) and data collection (DC) have been popular research issues. Different from existing works that consider MEC and DC scenarios separately, this paper investigates a multi-UAV-assisted joint MEC-DC system. Specifically, we formulate a joint optimization problem to minimize the MEC latency and maximize the collected data volume. This problem can be classified as a non-convex mixed integer programming problem that exhibits long-term optimization and dynamics. Thus, we propose a deep reinforcement learning-based approach that jointly optimizes the UAV movement, user transmit power, and user association in real time to solve the problem efficiently. Specifically, we reformulate the optimization problem into an action space-reduced Markov decision process (MDP) and optimize the user association by using a two-phase matching-based association (TMA) strategy. Subsequently, we propose a soft actor-critic (SAC)-based approach that integrates the proposed TMA strategy (SAC-TMA) to solve the formulated joint optimization problem collaboratively. Simulation results demonstrate that the proposed SAC-TMA is able to coordinate the two subsystems and can effectively reduce the system latency and improve the data collection volume compared with other benchmark algorithms.