Abstract:Recent research advocates deploying smaller, specialized code LLMs in agentic frameworks alongside frontier models, sparking interest in efficient strategies for multi-task learning that balance performance, constraints, and costs. We compare two approaches for creating small, multi-task code LLMs: data mixing versus model merging. We conduct extensive experiments across two model families (Qwen Coder and DeepSeek Coder) at two scales (2B and 7B parameters), fine-tuning them for code generation and code summarization tasks. Our evaluation on HumanEval, MBPP, and CodeXGlue benchmarks reveals that model merging achieves the best overall performance at larger scale across model families, retaining 96% of specialized model performance on code generation tasks while maintaining summarization capabilities. Notably, merged models can even surpass individually fine-tuned models, with our best configuration of Qwen Coder 2.5 7B model achieving 92.7% Pass@1 on HumanEval compared to 90.9% for its task-specific fine-tuned equivalent. At a smaller scale we find instead data mixing to be a preferred strategy. We further introduce a weight analysis technique to understand how different tasks affect model parameters and their implications for merging strategies. The results suggest that careful merging and mixing strategies can effectively combine task-specific capabilities without significant performance degradation, making them ideal for resource-constrained deployment scenarios.
Abstract:We study data curation for multimodal reasoning through the NeurIPS 2025 Data Curation for Vision-Language Reasoning (DCVLR) challenge, which isolates dataset selection by fixing the model and training protocol. Using a compact curated dataset derived primarily from Walton Multimodal Cold Start, our submission placed first in the challenge. Through post-competition ablations, we show that difficulty-based example selection on an aligned base dataset is the dominant driver of performance gains. Increasing dataset size does not reliably improve mean accuracy under the fixed training recipe, but mainly reduces run-to-run variance, while commonly used diversity and synthetic augmentation heuristics provide no additional benefit and often degrade performance. These results characterize DCVLR as a saturation-regime evaluation and highlight the central role of alignment and difficulty in data-efficient multimodal reasoning.