Alert button
Picture for Benjamin Risse

Benjamin Risse

Alert button

OccFlowNet: Towards Self-supervised Occupancy Estimation via Differentiable Rendering and Occupancy Flow

Add code
Bookmark button
Alert button
Feb 20, 2024
Simon Boeder, Fabian Gigengack, Benjamin Risse

Viaarxiv icon

pyAKI -- An Open Source Solution to Automated KDIGO classification

Add code
Bookmark button
Alert button
Jan 23, 2024
Christian Porschen, Jan Ernsting, Paul Brauckmann, Raphael Weiss, Till Würdemann, Hendrik Booke, Wida Amini, Ludwig Maidowski, Benjamin Risse, Tim Hahn, Thilo von Groote

Viaarxiv icon

Momentum-SAM: Sharpness Aware Minimization without Computational Overhead

Add code
Bookmark button
Alert button
Jan 22, 2024
Marlon Becker, Frederick Altrock, Benjamin Risse

Viaarxiv icon

Deepbet: Fast brain extraction of T1-weighted MRI using Convolutional Neural Networks

Add code
Bookmark button
Alert button
Aug 14, 2023
Lukas Fisch, Stefan Zumdick, Carlotta Barkhau, Daniel Emden, Jan Ernsting, Ramona Leenings, Kelvin Sarink, Nils R. Winter, Benjamin Risse, Udo Dannlowski, Tim Hahn

Figure 1 for Deepbet: Fast brain extraction of T1-weighted MRI using Convolutional Neural Networks
Figure 2 for Deepbet: Fast brain extraction of T1-weighted MRI using Convolutional Neural Networks
Figure 3 for Deepbet: Fast brain extraction of T1-weighted MRI using Convolutional Neural Networks
Figure 4 for Deepbet: Fast brain extraction of T1-weighted MRI using Convolutional Neural Networks
Viaarxiv icon

From Group-Differences to Single-Subject Probability: Conformal Prediction-based Uncertainty Estimation for Brain-Age Modeling

Add code
Bookmark button
Alert button
Feb 10, 2023
Jan Ernsting, Nils R. Winter, Ramona Leenings, Kelvin Sarink, Carlotta B. C. Barkhau, Lukas Fisch, Daniel Emden, Vincent Holstein, Jonathan Repple, Dominik Grotegerd, Susanne Meinert, NAKO Investigators, Klaus Berger, Benjamin Risse, Udo Dannlowski, Tim Hahn

Figure 1 for From Group-Differences to Single-Subject Probability: Conformal Prediction-based Uncertainty Estimation for Brain-Age Modeling
Viaarxiv icon

Seeing biodiversity: perspectives in machine learning for wildlife conservation

Add code
Bookmark button
Alert button
Oct 25, 2021
Devis Tuia, Benjamin Kellenberger, Sara Beery, Blair R. Costelloe, Silvia Zuffi, Benjamin Risse, Alexander Mathis, Mackenzie W. Mathis, Frank van Langevelde, Tilo Burghardt, Roland Kays, Holger Klinck, Martin Wikelski, Iain D. Couzin, Grant van Horn, Margaret C. Crofoot, Charles V. Stewart, Tanya Berger-Wolf

Figure 1 for Seeing biodiversity: perspectives in machine learning for wildlife conservation
Figure 2 for Seeing biodiversity: perspectives in machine learning for wildlife conservation
Figure 3 for Seeing biodiversity: perspectives in machine learning for wildlife conservation
Figure 4 for Seeing biodiversity: perspectives in machine learning for wildlife conservation
Viaarxiv icon

An Uncertainty-Aware, Shareable and Transparent Neural Network Architecture for Brain-Age Modeling

Add code
Bookmark button
Alert button
Jul 16, 2021
Tim Hahn, Jan Ernsting, Nils R. Winter, Vincent Holstein, Ramona Leenings, Marie Beisemann, Lukas Fisch, Kelvin Sarink, Daniel Emden, Nils Opel, Ronny Redlich, Jonathan Repple, Dominik Grotegerd, Susanne Meinert, Jochen G. Hirsch, Thoralf Niendorf, Beate Endemann, Fabian Bamberg, Thomas Kröncke, Robin Bülow, Henry Völzke, Oyunbileg von Stackelberg, Ramona Felizitas Sowade, Lale Umutlu, Börge Schmidt, Svenja Caspers, German National Cohort Study Center Consortium, Harald Kugel, Tilo Kircher, Benjamin Risse, Christian Gaser, James H. Cole, Udo Dannlowski, Klaus Berger

Figure 1 for An Uncertainty-Aware, Shareable and Transparent Neural Network Architecture for Brain-Age Modeling
Figure 2 for An Uncertainty-Aware, Shareable and Transparent Neural Network Architecture for Brain-Age Modeling
Figure 3 for An Uncertainty-Aware, Shareable and Transparent Neural Network Architecture for Brain-Age Modeling
Viaarxiv icon

The Impact of Activation Sparsity on Overfitting in Convolutional Neural Networks

Add code
Bookmark button
Alert button
Apr 13, 2021
Karim Huesmann, Luis Garcia Rodriguez, Lars Linsen, Benjamin Risse

Figure 1 for The Impact of Activation Sparsity on Overfitting in Convolutional Neural Networks
Figure 2 for The Impact of Activation Sparsity on Overfitting in Convolutional Neural Networks
Figure 3 for The Impact of Activation Sparsity on Overfitting in Convolutional Neural Networks
Figure 4 for The Impact of Activation Sparsity on Overfitting in Convolutional Neural Networks
Viaarxiv icon

Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks

Add code
Bookmark button
Alert button
Mar 22, 2021
Lukas Fisch, Jan Ernsting, Nils R. Winter, Vincent Holstein, Ramona Leenings, Marie Beisemann, Kelvin Sarink, Daniel Emden, Nils Opel, Ronny Redlich, Jonathan Repple, Dominik Grotegerd, Susanne Meinert, Niklas Wulms, Heike Minnerup, Jochen G. Hirsch, Thoralf Niendorf, Beate Endemann, Fabian Bamberg, Thomas Kröncke, Annette Peters, Robin Bülow, Henry Völzke, Oyunbileg von Stackelberg, Ramona Felizitas Sowade, Lale Umutlu, Börge Schmidt, Svenja Caspers, German National Cohort Study Center Consortium, Harald Kugel, Bernhard T. Baune, Tilo Kircher, Benjamin Risse, Udo Dannlowski, Klaus Berger, Tim Hahn

Figure 1 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
Figure 2 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
Figure 3 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
Figure 4 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
Viaarxiv icon

Exploiting the Full Capacity of Deep Neural Networks while Avoiding Overfitting by Targeted Sparsity Regularization

Add code
Bookmark button
Alert button
Feb 21, 2020
Karim Huesmann, Soeren Klemm, Lars Linsen, Benjamin Risse

Figure 1 for Exploiting the Full Capacity of Deep Neural Networks while Avoiding Overfitting by Targeted Sparsity Regularization
Figure 2 for Exploiting the Full Capacity of Deep Neural Networks while Avoiding Overfitting by Targeted Sparsity Regularization
Figure 3 for Exploiting the Full Capacity of Deep Neural Networks while Avoiding Overfitting by Targeted Sparsity Regularization
Figure 4 for Exploiting the Full Capacity of Deep Neural Networks while Avoiding Overfitting by Targeted Sparsity Regularization
Viaarxiv icon