Abstract:Retrieval-Augmented Generation (RAG) helps LLMs stay accurate, but feeding long documents into a prompt makes the model slow and expensive. This has motivated context compression, ranging from token pruning and summarization to embedding-based compression. While researchers have tried ''compressing'' these documents into smaller summaries or mathematical embeddings, there is a catch: the more you compress the data, the more the LLM struggles to understand it. To address this challenge, we propose ArcAligner (Adaptive recursive context *Aligner*), a lightweight module integrated into the language model layers to help the model better utilize highly compressed context representations for downstream generation. It uses an adaptive ''gating'' system that only adds extra processing power when the information is complex, keeping the system fast. Across knowledge-intensive QA benchmarks, ArcAligner consistently beats compression baselines at comparable compression rates, especially on multi-hop and long-tail settings. The source code is publicly available.
Abstract:Retrieval-Augmented Generation (RAG) improves generation quality by incorporating evidence retrieved from large external corpora. However, most existing methods rely on statically selecting top-k passages based on individual relevance, which fails to exploit combinatorial gains among passages and often introduces substantial redundancy. To address this limitation, we propose OptiSet, a set-centric framework that unifies set selection and set-level ranking for RAG. OptiSet adopts an "Expand-then-Refine" paradigm: it first expands a query into multiple perspectives to enable a diverse candidate pool and then refines the candidate pool via re-selection to form a compact evidence set. We then devise a self-synthesis strategy without strong LLM supervision to derive preference labels from the set conditional utility changes of the generator, thereby identifying complementary and redundant evidence. Finally, we introduce a set-list wise training strategy that jointly optimizes set selection and set-level ranking, enabling the model to favor compact, high-gain evidence sets. Extensive experiments demonstrate that OptiSet improves performance on complex combinatorial problems and makes generation more efficient. The source code is publicly available.