Abstract:Open science initiatives have strengthened scientific integrity and accelerated research progress across many fields, but the state of their practice within transportation research remains under-investigated. Key features of open science, defined here as data and code availability, are difficult to extract due to the inherent complexity of the field. Previous work has either been limited to small-scale studies due to the labor-intensive nature of manual analysis or has relied on large-scale bibliometric approaches that sacrifice contextual richness. This paper introduces an automatic and scalable feature-extraction pipeline to measure data and code availability in transportation research. We employ Large Language Models (LLMs) for this task and validate their performance against a manually curated dataset and through an inter-rater agreement analysis. We applied this pipeline to examine 10,724 research articles published in the Transportation Research Part series of journals between 2019 and 2024. Our analysis found that only 5% of quantitative papers shared a code repository, 4% of quantitative papers shared a data repository, and about 3% of papers shared both, with trends differing across journals, topics, and geographic regions. We found no significant difference in citation counts or review duration between papers that provided data and code and those that did not, suggesting a misalignment between open science efforts and traditional academic metrics. Consequently, encouraging these practices will likely require structural interventions from journals and funding agencies to supplement the lack of direct author incentives. The pipeline developed in this study can be readily scaled to other journals, representing a critical step toward the automated measurement and monitoring of open science practices in transportation research.
Abstract:This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture to solve road network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user equilibrium (UE) traffic assignment problem, and use inferences made by the trained model to calculate fitness function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using two NDP variants and an exact solver as benchmark, we show that our proposed framework can provide solutions within 5% gap of the global optimum results given less than 1% of the time required for finding the optimal results. Moreover, we observe many interesting future directions, thus we propose a brief research agenda for this topic. The key observation inspiring influential future research was that fitness function evaluation time using the inferences made by the GNN model for the genetic algorithm was in the order of milliseconds, which points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values provided by neural networks, and 2) can use the significantly higher computation time provided to them to explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of metaheuristics that are crafted for use with AI-powered predictors.