Alert button
Picture for Ayush Singh

Ayush Singh

Alert button

Latent Graph Attention for Enhanced Spatial Context

Jul 12, 2023
Ayush Singh, Yash Bhambhu, Himanshu Buckchash, Deepak K. Gupta, Dilip K. Prasad

Figure 1 for Latent Graph Attention for Enhanced Spatial Context
Figure 2 for Latent Graph Attention for Enhanced Spatial Context
Figure 3 for Latent Graph Attention for Enhanced Spatial Context
Figure 4 for Latent Graph Attention for Enhanced Spatial Context

Global contexts in images are quite valuable in image-to-image translation problems. Conventional attention-based and graph-based models capture the global context to a large extent, however, these are computationally expensive. Moreover, the existing approaches are limited to only learning the pairwise semantic relation between any two points on the image. In this paper, we present Latent Graph Attention (LGA) a computationally inexpensive (linear to the number of nodes) and stable, modular framework for incorporating the global context in the existing architectures, especially empowering small-scale architectures to give performance closer to large size architectures, thus making the light-weight architectures more useful for edge devices with lower compute power and lower energy needs. LGA propagates information spatially using a network of locally connected graphs, thereby facilitating to construct a semantically coherent relation between any two spatially distant points that also takes into account the influence of the intermediate pixels. Moreover, the depth of the graph network can be used to adapt the extent of contextual spread to the target dataset, thereby being able to explicitly control the added computational cost. To enhance the learning mechanism of LGA, we also introduce a novel contrastive loss term that helps our LGA module to couple well with the original architecture at the expense of minimal additional computational load. We show that incorporating LGA improves the performance on three challenging applications, namely transparent object segmentation, image restoration for dehazing and optical flow estimation.

* 20 pages, 7 figures 
Viaarxiv icon

Ultrasound Based Prosthetic Arm Control

Feb 10, 2023
Ayush Singh, Harikrishnan Pisharody Gopalkrishnan, Mahesh Raveendranatha Panicker

Figure 1 for Ultrasound Based Prosthetic Arm Control
Figure 2 for Ultrasound Based Prosthetic Arm Control
Figure 3 for Ultrasound Based Prosthetic Arm Control
Figure 4 for Ultrasound Based Prosthetic Arm Control

The creation of unique control methods for a hand prosthesis is still a problem that has to be addressed. The best choice of a human-machine interface (HMI) that should be used to enable natural control is still a challenge. Surface electromyography (sEMG), the most popular option, has a variety of difficult-to-fix issues (electrode displacement, sweat, fatigue). The ultrasound imaging-based methodology offers a means of recognising complex muscle activity and configuration with a greater SNR and less hardware requirements as compared to sEMG. In this study, a prototype system for high frame rate ultrasound imaging for prosthetic arm control is proposed. Using the proposed framework, a virtual robotic hand simulation is developed that can mimick a human hand as illustrated in the link. The proposed classification model simulating four hand gestures has a classification accuracy of more than 90%.

Viaarxiv icon

Gas Leak detection using airborne US Sensors

Feb 08, 2023
Ayush Singh, Harikrishnan Pisharody Gopalkrishnan, Mahesh Raveendranatha Panicker

Figure 1 for Gas Leak detection using airborne US Sensors
Figure 2 for Gas Leak detection using airborne US Sensors
Figure 3 for Gas Leak detection using airborne US Sensors
Figure 4 for Gas Leak detection using airborne US Sensors

Gas leakage is a critical problem in the industrial sector, residential structures, and gas-powered vehicles; installing gas leakage detection systems is one of the preventative strategies for reducing hazards caused by gas leakage. Conventional gas sensors, such as electrochemical, infrared point, and MOS sensors, have traditionally been used to detect leaks. The challenge with these sensors is their versatility in settings involving many gases, as well as their exorbitant cost and scalability. As a result, several gas detection approaches were explored. Our approach utilizes 40 KHz ultrasound signal for gas detection. Here, the reflected signal has been analyzed to detect gas leaks and identify gas in real-time, providing a quick, reliable solution for gas leak detection in industrial environments. The electronics and sensors used are both low-cost and easily scalable. The system incorporates commonly accessible materials and off-the-shelf components, making it suitable for use in a variety of contexts. They are also more effective at detecting numerous gas leaks and has a longer lifetime. Butane was used to test our system. The breaches were identified in 0.01 seconds after permitting gas to flow from a broken pipe, whereas identifying the gas took 0.8 seconds

* CORRUPT DATA 
Viaarxiv icon

Addressing Distribution Shift at Test Time in Pre-trained Language Models

Dec 05, 2022
Ayush Singh, John E. Ortega

Figure 1 for Addressing Distribution Shift at Test Time in Pre-trained Language Models

State-of-the-art pre-trained language models (PLMs) outperform other models when applied to the majority of language processing tasks. However, PLMs have been found to degrade in performance under distribution shift, a phenomenon that occurs when data at test-time does not come from the same distribution as the source training set. Equally as challenging is the task of obtaining labels in real-time due to issues like long-labeling feedback loops. The lack of adequate methods that address the aforementioned challenges constitutes the need for approaches that continuously adapt the PLM to a distinct distribution. Unsupervised domain adaptation adapts a source model to an unseen as well as unlabeled target domain. While some techniques such as data augmentation can adapt models in several scenarios, they have only been sparsely studied for addressing the distribution shift problem. In this work, we present an approach (MEMO-CL) that improves the performance of PLMs at test-time under distribution shift. Our approach takes advantage of the latest unsupervised techniques in data augmentation and adaptation to minimize the entropy of the PLM's output distribution. MEMO-CL operates on a batch of augmented samples from a single observation in the test set. The technique introduced is unsupervised, domain-agnostic, easy to implement, and requires no additional data. Our experiments result in a 3% improvement over current test-time adaptation baselines.

* Accepted to 2nd International Workshop on Practical Deep Learning in the Wild at AAAI 2023 
Viaarxiv icon

BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

Nov 09, 2022
Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Karen Fort, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo Wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, Thomas Wolf

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.

Viaarxiv icon

BigBIO: A Framework for Data-Centric Biomedical Natural Language Processing

Jun 30, 2022
Jason Alan Fries, Leon Weber, Natasha Seelam, Gabriel Altay, Debajyoti Datta, Samuele Garda, Myungsun Kang, Ruisi Su, Wojciech Kusa, Samuel Cahyawijaya, Fabio Barth, Simon Ott, Matthias Samwald, Stephen Bach, Stella Biderman, Mario Sänger, Bo Wang, Alison Callahan, Daniel León Periñán, Théo Gigant, Patrick Haller, Jenny Chim, Jose David Posada, John Michael Giorgi, Karthik Rangasai Sivaraman, Marc Pàmies, Marianna Nezhurina, Robert Martin, Michael Cullan, Moritz Freidank, Nathan Dahlberg, Shubhanshu Mishra, Shamik Bose, Nicholas Michio Broad, Yanis Labrak, Shlok S Deshmukh, Sid Kiblawi, Ayush Singh, Minh Chien Vu, Trishala Neeraj, Jonas Golde, Albert Villanova del Moral, Benjamin Beilharz

Figure 1 for BigBIO: A Framework for Data-Centric Biomedical Natural Language Processing
Figure 2 for BigBIO: A Framework for Data-Centric Biomedical Natural Language Processing
Figure 3 for BigBIO: A Framework for Data-Centric Biomedical Natural Language Processing
Figure 4 for BigBIO: A Framework for Data-Centric Biomedical Natural Language Processing

Training and evaluating language models increasingly requires the construction of meta-datasets --diverse collections of curated data with clear provenance. Natural language prompting has recently lead to improved zero-shot generalization by transforming existing, supervised datasets into a diversity of novel pretraining tasks, highlighting the benefits of meta-dataset curation. While successful in general-domain text, translating these data-centric approaches to biomedical language modeling remains challenging, as labeled biomedical datasets are significantly underrepresented in popular data hubs. To address this challenge, we introduce BigBIO a community library of 126+ biomedical NLP datasets, currently covering 12 task categories and 10+ languages. BigBIO facilitates reproducible meta-dataset curation via programmatic access to datasets and their metadata, and is compatible with current platforms for prompt engineering and end-to-end few/zero shot language model evaluation. We discuss our process for task schema harmonization, data auditing, contribution guidelines, and outline two illustrative use cases: zero-shot evaluation of biomedical prompts and large-scale, multi-task learning. BigBIO is an ongoing community effort and is available at https://github.com/bigscience-workshop/biomedical

* Submitted to NeurIPS 2022 Datasets and Benchmarks Track 
Viaarxiv icon

Semantic Parsing Natural Language into Relational Algebra

Jun 25, 2021
Ruiyang Xu, Ayush Singh

Natural interface to database (NLIDB) has been researched a lot during the past decades. In the core of NLIDB, is a semantic parser used to convert natural language into SQL. Solutions from traditional NLP methodology focuses on grammar rule pattern learning and pairing via intermediate logic forms. Although those methods give an acceptable performance on certain specific database and parsing tasks, they are hard to generalize and scale. On the other hand, recent progress in neural deep learning seems to provide a promising direction towards building a general NLIDB system. Unlike the traditional approach, those neural methodologies treat the parsing problem as a sequence-to-sequence learning problem. In this paper, we experimented on several sequence-to-sequence learning models and evaluate their performance on general database parsing task.

* Semester project report for NLP course 
Viaarxiv icon

Single image dehazing for a variety of haze scenarios using back projected pyramid network

Aug 15, 2020
Ayush Singh, Ajay Bhave, Dilip K. Prasad

Figure 1 for Single image dehazing for a variety of haze scenarios using back projected pyramid network
Figure 2 for Single image dehazing for a variety of haze scenarios using back projected pyramid network
Figure 3 for Single image dehazing for a variety of haze scenarios using back projected pyramid network
Figure 4 for Single image dehazing for a variety of haze scenarios using back projected pyramid network

Learning to dehaze single hazy images, especially using a small training dataset is quite challenging. We propose a novel generative adversarial network architecture for this problem, namely back projected pyramid network (BPPNet), that gives good performance for a variety of challenging haze conditions, including dense haze and inhomogeneous haze. Our architecture incorporates learning of multiple levels of complexities while retaining spatial context through iterative blocks of UNets and structural information of multiple scales through a novel pyramidal convolution block. These blocks together for the generator and are amenable to learning through back projection. We have shown that our network can be trained without over-fitting using as few as 20 image pairs of hazy and non-hazy images. We report the state of the art performances on NTIRE 2018 homogeneous haze datasets for indoor and outdoor images, NTIRE 2019 denseHaze dataset, and NTIRE 2020 non-homogeneous haze dataset.

* 16 pages, 8 figures, to be published in Computer Vision ECCV 2020 Workshops 
Viaarxiv icon