The problem of travel time estimation is widely considered as the fundamental challenge of modern logistics. The complex nature of interconnections between spatial aspects of roads and temporal dynamics of ground transport still preserves an area to experiment with. However, the total volume of currently accumulated data encourages the construction of the learning models which have the perspective to significantly outperform earlier solutions. In order to address the problems of travel time estimation, we propose a new method based on transformer architecture - TransTTE.
The problem of co-authors selection in the area of scientific collaborations might be a daunting one. In this paper, we propose a new pipeline that effectively utilizes citation data in the link prediction task on the co-authorship network. In particular, we explore the capabilities of a recommender system based on data aggregation strategies on different graphs. Since graph neural networks proved their efficiency on a wide range of tasks related to recommendation systems, we leverage them as a relevant method for the forecasting of potential collaborations in the scientific community.