Abstract:Existing shadow detection models struggle to differentiate dark image areas from shadows. In this paper, we tackle this issue by verifying that all detected shadows are real, i.e. they have paired shadow casters. We perform this step in a physically-accurate manner by differentiably re-rendering the scene and observing the changes stemming from carving out estimated shadow casters. Thanks to this approach, the RenDetNet proposed in this paper is the first learning-based shadow detection model whose supervisory signals can be computed in a self-supervised manner. The developed system compares favourably against recent models trained on our data. As part of this publication, we release our code on github.
Abstract:Exploiting both audio and visual modalities for video classification is a challenging task, as the existing methods require large model architectures, leading to high computational complexity and resource requirements. Smaller architectures, on the other hand, struggle to achieve optimal performance. In this paper, we propose Attend-Fusion, an audio-visual (AV) fusion approach that introduces a compact model architecture specifically designed to capture intricate audio-visual relationships in video data. Through extensive experiments on the challenging YouTube-8M dataset, we demonstrate that Attend-Fusion achieves an F1 score of 75.64\% with only 72M parameters, which is comparable to the performance of larger baseline models such as Fully-Connected Late Fusion (75.96\% F1 score, 341M parameters). Attend-Fusion achieves similar performance to the larger baseline model while reducing the model size by nearly 80\%, highlighting its efficiency in terms of model complexity. Our work demonstrates that the Attend-Fusion model effectively combines audio and visual information for video classification, achieving competitive performance with significantly reduced model size. This approach opens new possibilities for deploying high-performance video understanding systems in resource-constrained environments across various applications.
Abstract:Existing methods for reconstructing objects and humans from a monocular image suffer from severe mesh collisions and performance limitations for interacting occluding objects. This paper introduces a method to obtain a globally consistent 3D reconstruction of interacting objects and people from a single image. Our contributions include: 1) an optimization framework, featuring a collision loss, tailored to handle human-object and human-human interactions, ensuring spatially coherent scene reconstruction; and 2) a novel technique to robustly estimate 6 degrees of freedom (DOF) poses, specifically for heavily occluded objects, exploiting image inpainting. Notably, our proposed method operates effectively on images from real-world scenarios, without necessitating scene or object-level 3D supervision. Extensive qualitative and quantitative evaluation against existing methods demonstrates a significant reduction in collisions in the final reconstructions of scenes with multiple interacting humans and objects and a more coherent scene reconstruction.
Abstract:Existing video captioning benchmarks and models lack coherent representations of causal-temporal narrative, which is sequences of events linked through cause and effect, unfolding over time and driven by characters or agents. This lack of narrative restricts models' ability to generate text descriptions that capture the causal and temporal dynamics inherent in video content. To address this gap, we propose NarrativeBridge, an approach comprising of: (1) a novel Causal-Temporal Narrative (CTN) captions benchmark generated using a large language model and few-shot prompting, explicitly encoding cause-effect temporal relationships in video descriptions, evaluated automatically to ensure caption quality and relevance; and (2) a dedicated Cause-Effect Network (CEN) architecture with separate encoders for capturing cause and effect dynamics independently, enabling effective learning and generation of captions with causal-temporal narrative. Extensive experiments demonstrate that CEN is more accurate in articulating the causal and temporal aspects of video content than the second best model (GIT): 17.88 and 17.44 CIDEr on the MSVD and MSR-VTT datasets, respectively. The proposed framework understands and generates nuanced text descriptions with intricate causal-temporal narrative structures present in videos, addressing a critical limitation in video captioning. For project details, visit https://narrativebridge.github.io/.
Abstract:Unlike the sparse label action detection task, where a single action occurs in each timestamp of a video, in a dense multi-label scenario, actions can overlap. To address this challenging task, it is necessary to simultaneously learn (i) temporal dependencies and (ii) co-occurrence action relationships. Recent approaches model temporal information by extracting multi-scale features through hierarchical transformer-based networks. However, the self-attention mechanism in transformers inherently loses temporal positional information. We argue that combining this with multiple sub-sampling processes in hierarchical designs can lead to further loss of positional information. Preserving this information is essential for accurate action detection. In this paper, we address this issue by proposing a novel transformer-based network that (a) employs a non-hierarchical structure when modelling different ranges of temporal dependencies and (b) embeds relative positional encoding in its transformer layers. Furthermore, to model co-occurrence action relationships, current methods explicitly embed class relations into the transformer network. However, these approaches are not computationally efficient, as the network needs to compute all possible pair action class relations. We also overcome this challenge by introducing a novel learning paradigm that allows the network to benefit from explicitly modelling temporal co-occurrence action dependencies without imposing their additional computational costs during inference. We evaluate the performance of our proposed approach on two challenging dense multi-label benchmark datasets and show that our method improves the current state-of-the-art results.
Abstract:Weakly supervised audio-visual video parsing (AVVP) methods aim to detect audible-only, visible-only, and audible-visible events using only video-level labels. Existing approaches tackle this by leveraging unimodal and cross-modal contexts. However, we argue that while cross-modal learning is beneficial for detecting audible-visible events, in the weakly supervised scenario, it negatively impacts unaligned audible or visible events by introducing irrelevant modality information. In this paper, we propose CoLeaF, a novel learning framework that optimizes the integration of cross-modal context in the embedding space such that the network explicitly learns to combine cross-modal information for audible-visible events while filtering them out for unaligned events. Additionally, as videos often involve complex class relationships, modelling them improves performance. However, this introduces extra computational costs into the network. Our framework is designed to leverage cross-class relationships during training without incurring additional computations at inference. Furthermore, we propose new metrics to better evaluate a method's capabilities in performing AVVP. Our extensive experiments demonstrate that CoLeaF significantly improves the state-of-the-art results by an average of 1.9% and 2.4% F-score on the LLP and UnAV-100 datasets, respectively.
Abstract:In this paper we present S3R-Net, the Self-Supervised Shadow Removal Network. The two-branch WGAN model achieves self-supervision relying on the unify-and-adaptphenomenon - it unifies the style of the output data and infers its characteristics from a database of unaligned shadow-free reference images. This approach stands in contrast to the large body of supervised frameworks. S3R-Net also differentiates itself from the few existing self-supervised models operating in a cycle-consistent manner, as it is a non-cyclic, unidirectional solution. The proposed framework achieves comparable numerical scores to recent selfsupervised shadow removal models while exhibiting superior qualitative performance and keeping the computational cost low.
Abstract:This paper introduces ViscoNet, a novel method that enhances text-to-image human generation models with visual prompting. Unlike existing methods that rely on lengthy text descriptions to control the image structure, ViscoNet allows users to specify the visual appearance of the target object with a reference image. ViscoNet disentangles the object's appearance from the image background and injects it into a pre-trained latent diffusion model (LDM) model via a ControlNet branch. This way, ViscoNet mitigates the style mode collapse problem and enables precise and flexible visual control. We demonstrate the effectiveness of ViscoNet on human image generation, where it can manipulate visual attributes and artistic styles with text and image prompts. We also show that ViscoNet can learn visual conditioning from small and specific object domains while preserving the generative power of the LDM backbone.
Abstract:In the context of Audio Visual Question Answering (AVQA) tasks, the audio visual modalities could be learnt on three levels: 1) Spatial, 2) Temporal, and 3) Semantic. Existing AVQA methods suffer from two major shortcomings; the audio-visual (AV) information passing through the network isn't aligned on Spatial and Temporal levels; and, inter-modal (audio and visual) Semantic information is often not balanced within a context; this results in poor performance. In this paper, we propose a novel end-to-end Contextual Multi-modal Alignment (CAD) network that addresses the challenges in AVQA methods by i) introducing a parameter-free stochastic Contextual block that ensures robust audio and visual alignment on the Spatial level; ii) proposing a pre-training technique for dynamic audio and visual alignment on Temporal level in a self-supervised setting, and iii) introducing a cross-attention mechanism to balance audio and visual information on Semantic level. The proposed novel CAD network improves the overall performance over the state-of-the-art methods on average by 9.4% on the MUSIC-AVQA dataset. We also demonstrate that our proposed contributions to AVQA can be added to the existing methods to improve their performance without additional complexity requirements.
Abstract:We present PAT, a transformer-based network that learns complex temporal co-occurrence action dependencies in a video by exploiting multi-scale temporal features. In existing methods, the self-attention mechanism in transformers loses the temporal positional information, which is essential for robust action detection. To address this issue, we (i) embed relative positional encoding in the self-attention mechanism and (ii) exploit multi-scale temporal relationships by designing a novel non hierarchical network, in contrast to the recent transformer-based approaches that use a hierarchical structure. We argue that joining the self-attention mechanism with multiple sub-sampling processes in the hierarchical approaches results in increased loss of positional information. We evaluate the performance of our proposed approach on two challenging dense multi-label benchmark datasets, and show that PAT improves the current state-of-the-art result by 1.1% and 0.6% mAP on the Charades and MultiTHUMOS datasets, respectively, thereby achieving the new state-of-the-art mAP at 26.5% and 44.6%, respectively. We also perform extensive ablation studies to examine the impact of the different components of our proposed network.