Abstract:Each year, thousands of patients in need of heart transplants face life-threatening wait times due to organ scarcity. While allocation policies aim to maximize population-level outcomes, current approaches often fail to account for the dynamic arrival of organs and the composition of waitlisted candidates, thereby hampering efficiency. The United States is transitioning from rigid, rule-based allocation to more flexible data-driven models. In this paper, we propose a novel framework for non-myopic policy optimization in general online matching relying on potentials, a concept originally introduced for kidney exchange. We develop scalable and accurate ways of learning potentials that are higher-dimensional and more expressive than prior approaches. Our approach is a form of self-supervised imitation learning: the potentials are trained to mimic an omniscient algorithm that has perfect foresight. We focus on the application of heart transplant allocation and demonstrate, using real historical data, that our policies significantly outperform prior approaches -- including the current US status quo policy and the proposed continuous distribution framework -- in optimizing for population-level outcomes. Our analysis and methods come at a pivotal moment in US policy, as the current heart transplant allocation system is under review. We propose a scalable and theoretically grounded path toward more effective organ allocation.
Abstract:Online matching has been a mainstay in domains such as Internet advertising and organ allocation, but practical algorithms often lack strong theoretical guarantees. We take an important step toward addressing this by developing new online matching algorithms based on a coarsening approach. Although coarsening typically implies a loss of granularity, we show that, to the contrary, aggregating offline nodes into capacitated clusters can yield near-optimal theoretical guarantees. We apply our methodology to heart transplant allocation to develop theoretically grounded policies based on structural properties of historical data. In realistic simulations, our policy closely matches the performance of the omniscient benchmark. Our work bridges the gap between data-driven heuristics and pessimistic theoretical lower bounds, and provides rigorous justification for prior clustering-based approaches in organ allocation.
Abstract:The allocation of scarce donor organs constitutes one of the most consequential algorithmic challenges in healthcare. While the field is rapidly transitioning from rigid, rule-based systems to machine learning and data-driven optimization, we argue that current approaches often overlook a fundamental barrier: incentives. In this position paper, we highlight that organ allocation is not merely a static optimization problem, but rather a complex game involving transplant centers, clinicians, and regulators. Focusing on US adult heart transplant allocation, we identify critical incentive misalignments across the decision-making pipeline, and present data showing that they are having adverse consequences today. Our main position is that the next generation of allocation policies should be incentive aware. We outline a research agenda for the machine learning community, calling for the integration of mechanism design, strategic classification, causal inference, and social choice to ensure robustness, efficiency, and fairness in the face of strategic behavior from the various constituent groups.
Abstract:Heart transplantation is a viable path for patients suffering from advanced heart failure, but this lifesaving option is severely limited due to donor shortage. Although the current allocation policy was recently revised in 2018, a major concern is that it does not adequately take into account pretransplant and post-transplant mortality. In this paper, we take an important step toward addressing these deficiencies. To begin with, we use historical data from UNOS to develop a new simulator that enables us to evaluate and compare the performance of different policies. We then leverage our simulator to demonstrate that the status quo policy is considerably inferior to the myopic policy that matches incoming donors to the patient who maximizes the number of years gained by the transplant. Moreover, we develop improved policies that account for the dynamic nature of the allocation process through the use of potentials -- a measure of a patient's utility in future allocations that we introduce. We also show that batching together even a handful of donors -- which is a viable option for a certain type of donors -- further enhances performance. Our simulator also allows us to evaluate the effect of critical, and often unexplored, factors in the allocation, such as geographic proximity and the tendency to reject offers by the transplant centers.
Abstract:Decisions about managing patients on the heart transplant waitlist are currently made by committees of doctors who consider multiple factors, but the process remains largely ad-hoc. With the growing volume of longitudinal patient, donor, and organ data collected by the United Network for Organ Sharing (UNOS) since 2018, there is increasing interest in analytical approaches to support clinical decision-making at the time of organ availability. In this study, we benchmark machine learning models that leverage longitudinal waitlist history data for time-dependent, time-to-event modeling of waitlist mortality. We train on 23,807 patient records with 77 variables and evaluate both survival prediction and discrimination at a 1-year horizon. Our best model achieves a C-Index of 0.94 and AUROC of 0.89, significantly outperforming previous models. Key predictors align with known risk factors while also revealing novel associations. Our findings can support urgency assessment and policy refinement in heart transplant decision making.