Abstract:Spatial awareness is a critical capability for embodied agents, as it enables them to anticipate and reason about unobserved regions. The primary challenge arises from learning the distribution of indoor semantics, complicated by sparse, imbalanced object categories and diverse spatial scales. Existing methods struggle to robustly generate unobserved areas in real time and do not generalize well to new environments. To this end, we propose \textbf{MapBERT}, a novel framework designed to effectively model the distribution of unseen spaces. Motivated by the observation that the one-hot encoding of semantic maps aligns naturally with the binary structure of bit encoding, we, for the first time, leverage a lookup-free BitVAE to encode semantic maps into compact bitwise tokens. Building on this, a masked transformer is employed to infer missing regions and generate complete semantic maps from limited observations. To enhance object-centric reasoning, we propose an object-aware masking strategy that masks entire object categories concurrently and pairs them with learnable embeddings, capturing implicit relationships between object embeddings and spatial tokens. By learning these relationships, the model more effectively captures indoor semantic distributions crucial for practical robotic tasks. Experiments on Gibson benchmarks show that MapBERT achieves state-of-the-art semantic map generation, balancing computational efficiency with accurate reconstruction of unobserved regions.
Abstract:Instance Image-Goal Navigation (IIN) requires autonomous agents to identify and navigate to a target object or location depicted in a reference image captured from any viewpoint. While recent methods leverage powerful novel view synthesis (NVS) techniques, such as three-dimensional Gaussian splatting (3DGS), they typically rely on randomly sampling multiple viewpoints or trajectories to ensure comprehensive coverage of discriminative visual cues. This approach, however, creates significant redundancy through overlapping image samples and lacks principled view selection, substantially increasing both rendering and comparison overhead. In this paper, we introduce a novel IIN framework with a hierarchical scoring paradigm that estimates optimal viewpoints for target matching. Our approach integrates cross-level semantic scoring, utilizing CLIP-derived relevancy fields to identify regions with high semantic similarity to the target object class, with fine-grained local geometric scoring that performs precise pose estimation within promising regions. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on simulated IIN benchmarks and real-world applicability.
Abstract:We present a hierarchical policy-learning framework that enables a legged humanoid to cooperatively carry extended loads with a human partner using only haptic cues for intent inference. At the upper tier, a lightweight behavior-cloning network consumes six-axis force/torque streams from dual wrist-mounted sensors and outputs whole-body planar velocity commands that capture the leader's applied forces. At the lower tier, a deep-reinforcement-learning policy, trained under randomized payloads (0-3 kg) and friction conditions in Isaac Gym and validated in MuJoCo and on a real Unitree G1, maps these high-level twists to stable, under-load joint trajectories. By decoupling intent interpretation (force -> velocity) from legged locomotion (velocity -> joints), our method combines intuitive responsiveness to human inputs with robust, load-adaptive walking. We collect training data without motion-capture or markers, only synchronized RGB video and F/T readings, employing SAM2 and WHAM to extract 3D human pose and velocity. In real-world trials, our humanoid achieves cooperative carry-and-move performance (completion time, trajectory deviation, velocity synchrony, and follower-force) on par with a blindfolded human-follower baseline. This work is the first to demonstrate learned haptic guidance fused with full-body legged control for fluid human-humanoid co-manipulation. Code and videos are available on the H2-COMPACT website.
Abstract:Zero-Shot Object Goal Navigation (ZS-OGN) enables robots or agents to navigate toward objects of unseen categories without object-specific training. Traditional approaches often leverage categorical semantic information for navigation guidance, which struggles when only objects are partially observed or detailed and functional representations of the environment are lacking. To resolve the above two issues, we propose \textit{Geometric-part and Affordance Maps} (GAMap), a novel method that integrates object parts and affordance attributes as navigation guidance. Our method includes a multi-scale scoring approach to capture geometric-part and affordance attributes of objects at different scales. Comprehensive experiments conducted on HM3D and Gibson benchmark datasets demonstrate improvements in Success Rate and Success weighted by Path Length, underscoring the efficacy of our geometric-part and affordance-guided navigation approach in enhancing robot autonomy and versatility, without any additional object-specific training or fine-tuning with the semantics of unseen objects and/or the locomotions of the robot.
Abstract:We introduce an innovative approach to advancing semantic understanding in zero-shot object goal navigation (ZS-OGN), enhancing the autonomy of robots in unfamiliar environments. Traditional reliance on labeled data has been a limitation for robotic adaptability, which we address by employing a dual-component framework that integrates a GLIP Vision Language Model for initial detection and an InstructionBLIP model for validation. This combination not only refines object and environmental recognition but also fortifies the semantic interpretation, pivotal for navigational decision-making. Our method, rigorously tested in both simulated and real-world settings, exhibits marked improvements in navigation precision and reliability.
Abstract:In this paper, we present a novel method for reliable frontier selection in Zero-Shot Object Goal Navigation (ZS-OGN), enhancing robotic navigation systems with foundation models to improve commonsense reasoning in indoor environments. Our approach introduces a multi-expert decision framework to address the nonsensical or irrelevant reasoning often seen in foundation model-based systems. The method comprises two key components: Diversified Expert Frontier Analysis (DEFA) and Consensus Decision Making (CDM). DEFA utilizes three expert models: furniture arrangement, room type analysis, and visual scene reasoning, while CDM aggregates their outputs, prioritizing unanimous or majority consensus for more reliable decisions. Demonstrating state-of-the-art performance on the RoboTHOR and HM3D datasets, our method excels at navigating towards untrained objects or goals and outperforms various baselines, showcasing its adaptability to dynamic real-world conditions and superior generalization capabilities.
Abstract:This paper proposes an approach for controlling surgical robotic systems, while complying with the Remote Center of Motion (RCM) constraint in Robot-Assisted Minimally Invasive Surgery (RA-MIS). In this approach, the RCM-constraint is upheld algorithmically, providing flexibility in the positioning of the insertion point and enabling compatibility with a wide range of general-purpose robots. The paper further investigates the impact of the tool's insertion ratio on the RCM-error, and introduces a manipulability index of the robot which considers the RCM-error that it is used to find a starting configuration. To accurately evaluate the proposed method's trajectory tracking within an RCM-constrained environment, an electromagnetic tracking system is employed. The results demonstrate the effectiveness of the proposed method in addressing the RCM constraint problem in RA-MIS.
Abstract:This paper introduces a novel control methodology designed to guide a collective of robotic-sheep in a cluttered and unknown environment using robotic-dogs. The dog-agents continuously scan the environment and compute a safe trajectory to guide the sheep to their final destination. The proposed optimization-based controller guarantees that the sheep reside within a desired distance from the reference trajectory through the use of Control Barrier Functions (CBF). Additional CBF constraints are employed simultaneously to ensure inter-agent and obstacle collision avoidance. The efficacy of the proposed approach is rigorously tested in simulation, which demonstrates the successful herding of the robotic-sheep within complex and cluttered environments.
Abstract:A robust, resource-efficient, distributed, and minimally parameterized 3D map matching and merging algorithm is proposed. The suggested algorithm utilizes tomographic features from 2D projections of horizontal cross-sections of gravity-aligned local maps, and matches these projection slices at all possible height differences, enabling the estimation of four degrees of freedom in an efficient and parallelizable manner. The advocated algorithm improves state-of-the-art feature extraction and registration pipelines by an order of magnitude in memory use and execution time. Experimental studies are offered to investigate the efficiency of this 3D map merging scheme.
Abstract:This article studies the problem of applying normal forces on a surface, using an underactuated aerial vehicle equipped with a dexterous robotic arm. A force-motion high-level controller is designed based on a Lyapunov function encompassing alignment and exerted force errors. This controller is coupled with a Control Barrier Function constraint under an optimization scheme using Quadratic Programming. This aims to enforce a prescribed relationship between the approaching motion for the end-effector and its alignment with the surface, thus ensuring safe operation. An adaptive low-level controller is devised for the aerial vehicle, capable of tracking velocity commands generated by the high-level controller. Simulations are presented to demonstrate the force exertion stability and safety of the controller in cases of large disturbances.