Abstract:Automatic Speech Recognition (ASR) systems now mediate countless human-technology interactions, yet research on their fairness implications remains surprisingly limited. This paper examines ASR bias through a philosophical lens, arguing that systematic misrecognition of certain speech varieties constitutes more than a technical limitation -- it represents a form of disrespect that compounds historical injustices against marginalized linguistic communities. We distinguish between morally neutral classification (discriminate1) and harmful discrimination (discriminate2), demonstrating how ASR systems can inadvertently transform the former into the latter when they consistently misrecognize non-standard dialects. We identify three unique ethical dimensions of speech technologies that differentiate ASR bias from other algorithmic fairness concerns: the temporal burden placed on speakers of non-standard varieties ("temporal taxation"), the disruption of conversational flow when systems misrecognize speech, and the fundamental connection between speech patterns and personal/cultural identity. These factors create asymmetric power relationships that existing technical fairness metrics fail to capture. The paper analyzes the tension between linguistic standardization and pluralism in ASR development, arguing that current approaches often embed and reinforce problematic language ideologies. We conclude that addressing ASR bias requires more than technical interventions; it demands recognition of diverse speech varieties as legitimate forms of expression worthy of technological accommodation. This philosophical reframing offers new pathways for developing ASR systems that respect linguistic diversity and speaker autonomy.
Abstract:Automatic Speech Recognition (ASR) has transformed daily tasks from video transcription to workplace hiring. ASR systems' growing use warrants robust and standardized auditing approaches to ensure automated transcriptions of high and equitable quality. This is especially critical for people with speech and language disorders (such as aphasia) who may disproportionately depend on ASR systems to navigate everyday life. In this work, we identify three pitfalls in existing standard ASR auditing procedures, and demonstrate how addressing them impacts audit results via a case study of six popular ASR systems' performance for aphasia speakers. First, audits often adhere to a single method of text standardization during data pre-processing, which (a) masks variability in ASR performance from applying different standardization methods, and (b) may not be consistent with how users - especially those from marginalized speech communities - would want their transcriptions to be standardized. Second, audits often display high-level demographic findings without further considering performance disparities among (a) more nuanced demographic subgroups, and (b) relevant covariates capturing acoustic information from the input audio. Third, audits often rely on a single gold-standard metric -- the Word Error Rate -- which does not fully capture the extent of errors arising from generative AI models, such as transcription hallucinations. We propose a more holistic auditing framework that accounts for these three pitfalls, and exemplify its results in our case study, finding consistently worse ASR performance for aphasia speakers relative to a control group. We call on practitioners to implement these robust ASR auditing practices that remain flexible to the rapidly changing ASR landscape.
Abstract:Speech-to-text services aim to transcribe input audio as accurately as possible. They increasingly play a role in everyday life, for example in personal voice assistants or in customer-company interactions. We evaluate Open AI's Whisper, a state-of-the-art service outperforming industry competitors. While many of Whisper's transcriptions were highly accurate, we found that roughly 1% of audio transcriptions contained entire hallucinated phrases or sentences, which did not exist in any form in the underlying audio. We thematically analyze the Whisper-hallucinated content, finding that 38% of hallucinations include explicit harms such as violence, made up personal information, or false video-based authority. We further provide hypotheses on why hallucinations occur, uncovering potential disparities due to speech type by health status. We call on industry practitioners to ameliorate these language-model-based hallucinations in Whisper, and to raise awareness of potential biases in downstream applications of speech-to-text models.