Abstract:A fundamental question in natural language processing is - what kind of language structure and semantics is the language model capturing? Graph formats such as knowledge graphs are easy to evaluate as they explicitly express language semantics and structure. This study evaluates the semantics encoded in the self-attention transformers by leveraging explicit knowledge graph structures. We propose novel metrics to measure the reconstruction error when providing graph path sequences from a knowledge graph and trying to reproduce/reconstruct the same from the outputs of the self-attention transformer models. The opacity of language models has an immense bearing on societal issues of trust and explainable decision outcomes. Our findings suggest that language models are models of stochastic control processes for plausible language pattern generation. However, they do not ascribe object and concept-level meaning and semantics to the learned stochastic patterns such as those described in knowledge graphs. Furthermore, to enable robust evaluation of concept understanding by language models, we construct and make public an augmented language understanding benchmark built on the General Language Understanding Evaluation (GLUE) benchmark. This has significant application-level user trust implications as stochastic patterns without a strong sense of meaning cannot be trusted in high-stakes applications.
Abstract:Automatic fact verification has received significant attention recently. Contemporary automatic fact-checking systems focus on estimating truthfulness using numerical scores which are not human-interpretable. A human fact-checker generally follows several logical steps to verify a verisimilitude claim and conclude whether it is truthful or a mere masquerade. Popular fact-checking websites follow a common structure for fact categorization such as half true, half false, false, pants on fire, etc. Therefore, it is necessary to have an aspect-based (which part is true and which part is false) explainable system that can assist human fact-checkers in asking relevant questions related to a fact, which can then be validated separately to reach a final verdict. In this paper, we propose a 5W framework (who, what, when, where, and why) for question-answer-based fact explainability. To that end, we have gathered a semi-automatically generated dataset called FACTIFY-5WQA, which consists of 395, 019 facts along with relevant 5W QAs underscoring our major contribution to this paper. A semantic role labeling system has been utilized to locate 5Ws, which generates QA pairs for claims using a masked language model. Finally, we report a baseline QA system to automatically locate those answers from evidence documents, which can be served as the baseline for future research in this field. Lastly, we propose a robust fact verification system that takes paraphrased claims and automatically validates them. The dataset and the baseline model are available at https://github.com/ankuranii/acl-5W-QA.
Abstract:Humans interact with the environment using a combination of perception - transforming sensory inputs from their environment into symbols, and cognition - mapping symbols to knowledge about the environment for supporting abstraction, reasoning by analogy, and long-term planning. Human perception-inspired machine perception, in the context of AI, refers to large-scale pattern recognition from raw data using neural networks trained using self-supervised learning objectives such as next-word prediction or object recognition. On the other hand, machine cognition encompasses more complex computations, such as using knowledge of the environment to guide reasoning, analogy, and long-term planning. Humans can also control and explain their cognitive functions. This seems to require the retention of symbolic mappings from perception outputs to knowledge about their environment. For example, humans can follow and explain the guidelines and safety constraints driving their decision-making in safety-critical applications such as healthcare, criminal justice, and autonomous driving. This article introduces the rapidly emerging paradigm of Neurosymbolic AI combines neural networks and knowledge-guided symbolic approaches to create more capable and flexible AI systems. These systems have immense potential to advance both algorithm-level (e.g., abstraction, analogy, reasoning) and application-level (e.g., explainable and safety-constrained decision-making) capabilities of AI systems.
Abstract:Opioid and substance misuse is rampant in the United States today, with the phenomenon known as the "opioid crisis". The relationship between substance use and mental health has been extensively studied, with one possible relationship being: substance misuse causes poor mental health. However, the lack of evidence on the relationship has resulted in opioids being largely inaccessible through legal means. This study analyzes the substance use posts on social media with opioids being sold through crypto market listings. We use the Drug Abuse Ontology, state-of-the-art deep learning, and knowledge-aware BERT-based models to generate sentiment and emotion for the social media posts to understand users' perceptions on social media by investigating questions such as: which synthetic opioids people are optimistic, neutral, or negative about? or what kind of drugs induced fear and sorrow? or what kind of drugs people love or are thankful about? or which drugs people think negatively about? or which opioids cause little to no sentimental reaction. We discuss how we crawled crypto market data and its use in extracting posts for fentanyl, fentanyl analogs, and other novel synthetic opioids. We also perform topic analysis associated with the generated sentiments and emotions to understand which topics correlate with people's responses to various drugs. Additionally, we analyze time-aware neural models built on these features while considering historical sentiment and emotional activity of posts related to a drug. The most effective model performs well (statistically significant) with (macroF1=82.12, recall =83.58) to identify substance use disorder.
Abstract:The internet gives the world an open platform to express their views and share their stories. While this is very valuable, it makes fake news one of our society's most pressing problems. Manual fact checking process is time consuming, which makes it challenging to disprove misleading assertions before they cause significant harm. This is he driving interest in automatic fact or claim verification. Some of the existing datasets aim to support development of automating fact-checking techniques, however, most of them are text based. Multi-modal fact verification has received relatively scant attention. In this paper, we provide a multi-modal fact-checking dataset called FACTIFY 2, improving Factify 1 by using new data sources and adding satire articles. Factify 2 has 50,000 new data instances. Similar to FACTIFY 1.0, we have three broad categories - support, no-evidence, and refute, with sub-categories based on the entailment of visual and textual data. We also provide a BERT and Vison Transformer based baseline, which acheives 65% F1 score in the test set. The baseline codes and the dataset will be made available at https://github.com/surya1701/Factify-2.0.
Abstract:After the pandemic, artificial intelligence (AI) powered support for mental health care has become increasingly important. The breadth and complexity of significant challenges required to provide adequate care involve: (a) Personalized patient understanding, (b) Safety-constrained and medically validated chatbot patient interactions, and (c) Support for continued feedback-based refinements in design using chatbot-patient interactions. We propose Alleviate, a chatbot designed to assist patients suffering from mental health challenges with personalized care and assist clinicians with understanding their patients better. Alleviate draws from an array of publicly available clinically valid mental-health texts and databases, allowing Alleviate to make medically sound and informed decisions. In addition, Alleviate's modular design and explainable decision-making lends itself to robust and continued feedback-based refinements to its design. In this paper, we explain the different modules of Alleviate and submit a short video demonstrating Alleviate's capabilities to help patients and clinicians understand each other better to facilitate optimal care strategies.
Abstract:Memes are the new-age conveyance mechanism for humor on social media sites. Memes often include an image and some text. Memes can be used to promote disinformation or hatred, thus it is crucial to investigate in details. We introduce Memotion 3, a new dataset with 10,000 annotated memes. Unlike other prevalent datasets in the domain, including prior iterations of Memotion, Memotion 3 introduces Hindi-English Codemixed memes while prior works in the area were limited to only the English memes. We describe the Memotion task, the data collection and the dataset creation methodologies. We also provide a baseline for the task. The baseline code and dataset will be made available at https://github.com/Shreyashm16/Memotion-3.0
Abstract:Domain-specific language understanding requires integrating multiple pieces of relevant contextual information. For example, we see both suicide and depression-related behavior (multiple contexts) in the text ``I have a gun and feel pretty bad about my life, and it wouldn't be the worst thing if I didn't wake up tomorrow''. Domain specificity in self-attention architectures is handled by fine-tuning on excerpts from relevant domain specific resources (datasets and external knowledge - medical textbook chapters on mental health diagnosis related to suicide and depression). We propose a modified self-attention architecture Knowledge-infused Self Attention Transformer (KSAT) that achieves the integration of multiple domain-specific contexts through the use of external knowledge sources. KSAT introduces knowledge-guided biases in dedicated self-attention layers for each knowledge source to accomplish this. In addition, KSAT provides mechanics for controlling the trade-off between learning from data and learning from knowledge. Our quantitative and qualitative evaluations show that (1) the KSAT architecture provides novel human-understandable ways to precisely measure and visualize the contributions of the infused domain contexts, and (2) KSAT performs competitively with other knowledge-infused baselines and significantly outperforms baselines that use fine-tuning for domain-specific tasks.
Abstract:Knowledge Graphs are a great resource to capture semantic knowledge in terms of entities and relationships between the entities. However, current deep learning models takes as input distributed representations or vectors. Thus, the graph is compressed in a vectorized representation. We conduct a study to examine if the deep learning model can compress a graph and then output the same graph with most of the semantics intact. Our experiments show that Transformer models are not able to express the full semantics of the input knowledge graph. We find that this is due to the disparity between the directed, relationship and type based information contained in a Knowledge Graph and the fully connected token-token undirected graphical interpretation of the Transformer Attention matrix.
Abstract:Recently, quite a few novel neural architectures were derived to solve math word problems by predicting expression trees. These architectures varied from seq2seq models, including encoders leveraging graph relationships combined with tree decoders. These models achieve good performance on various MWPs datasets but perform poorly when applied to an adversarial challenge dataset, SVAMP. We present a novel model MMTM that leverages multi-tasking and multi-decoder during pre-training. It creates variant tasks by deriving labels using pre-order, in-order and post-order traversal of expression trees, and uses task-specific decoders in a multi-tasking framework. We leverage transformer architectures with lower dimensionality and initialize weights from RoBERTa model. MMTM model achieves better mathematical reasoning ability and generalisability, which we demonstrate by outperforming the best state of the art baseline models from Seq2Seq, GTS, and Graph2Tree with a relative improvement of 19.4% on an adversarial challenge dataset SVAMP.