Abstract:With the widespread adoption of Large Language Models (LLMs), there is a growing need to establish best practices for leveraging their capabilities beyond traditional natural language tasks. In this paper, a novel cross-domain knowledge transfer framework is proposed to enhance the performance of LLMs in time series forecasting -- a task of increasing relevance in fields such as energy systems, finance, and healthcare. The approach systematically infuses LLMs with structured temporal information to improve their forecasting accuracy. This study evaluates the proposed method on a real-world time series dataset and compares it to a naive baseline where the LLM receives no auxiliary information. Results show that knowledge-informed forecasting significantly outperforms the uninformed baseline in terms of predictive accuracy and generalization. These findings highlight the potential of knowledge transfer strategies to bridge the gap between LLMs and domain-specific forecasting tasks.
Abstract:We propose a novel method applicable in many scene understanding problems that adapts the Monte Carlo Tree Search (MCTS) algorithm, originally designed to learn to play games of high-state complexity. From a generated pool of proposals, our method jointly selects and optimizes proposals that minimize the objective term. In our first application for floor plan reconstruction from point clouds, our method selects and refines the room proposals, modelled as 2D polygons, by optimizing on an objective function combining the fitness as predicted by a deep network and regularizing terms on the room shapes. We also introduce a novel differentiable method for rendering the polygonal shapes of these proposals. Our evaluations on the recent and challenging Structured3D and Floor-SP datasets show significant improvements over the state-of-the-art, without imposing hard constraints nor assumptions on the floor plan configurations. In our second application, we extend our approach to reconstruct general 3D room layouts from a color image and obtain accurate room layouts. We also show that our differentiable renderer can easily be extended for rendering 3D planar polygons and polygon embeddings. Our method shows high performance on the Matterport3D-Layout dataset, without introducing hard constraints on room layout configurations.