Abstract:Large language models (LLMs) are increasingly used for data generation. However, creating evaluation benchmarks raises the bar for this emerging paradigm. Benchmarks must target specific phenomena, penalize exploiting shortcuts, and be challenging. Through two case studies, we investigate whether LLMs can meet these demands by generating reasoning over-text benchmarks and comparing them to those created through careful crowdsourcing. Specifically, we evaluate both the validity and difficulty of LLM-generated versions of two high-quality reading comprehension datasets: CondaQA, which evaluates reasoning about negation, and DROP, which targets reasoning about quantities. We find that prompting LLMs can produce variants of these datasets that are often valid according to the annotation guidelines, at a fraction of the cost of the original crowdsourcing effort. However, we show that they are less challenging for LLMs than their human-authored counterparts. This finding sheds light on what may have been lost by generating evaluation data with LLMs, and calls for critically reassessing the immediate use of this increasingly prevalent approach to benchmark creation.
Abstract:Is explainability a false promise? This debate has emerged from the insufficient evidence that explanations aid people in situations they are introduced for. More human-centered, application-grounded evaluations of explanations are needed to settle this. Yet, with no established guidelines for such studies in NLP, researchers accustomed to standardized proxy evaluations must discover appropriate measurements, tasks, datasets, and sensible models for human-AI teams in their studies. To help with this, we first review fitting existing metrics. We then establish requirements for datasets to be suitable for application-grounded evaluations. Among over 50 datasets available for explainability research in NLP, we find that 4 meet our criteria. By finetuning Flan-T5-3B, we demonstrate the importance of reassessing the state of the art to form and study human-AI teams. Finally, we present the exemplar studies of human-AI decision-making for one of the identified suitable tasks -- verifying the correctness of a legal claim given a contract.