Abstract:The strategic importance of artificial intelligence is driving a global push toward Sovereign AI initiatives. Nationwide governments are increasingly developing dedicated infrastructures, called AI Factories (AIF), to achieve technological autonomy and secure the resources necessary to sustain robust local digital ecosystems. In Europe, the EuroHPC Joint Undertaking is investing hundreds of millions of euros into several AI Factories, built atop existing high-performance computing (HPC) supercomputers. However, while HPC systems excel in raw performance, they are not inherently designed for usability, accessibility, or serving as public-facing platforms for AI services such as inference or agentic applications. In contrast, AI practitioners are accustomed to cloud-native technologies like Kubernetes and object storage, tools that are often difficult to integrate within traditional HPC environments. This article advocates for a dual-stack approach within supercomputers: integrating both HPC and cloud-native technologies. Our goal is to bridge the divide between HPC and cloud computing by combining high performance and hardware acceleration with ease of use and service-oriented front-ends. This convergence allows each paradigm to amplify the other. To this end, we will study the cloud challenges of HPC (Serverless HPC) and the HPC challenges of cloud technologies (High-performance Cloud).
Abstract:Edge computing has emerged as a pivotal technology, offering significant advantages such as low latency, enhanced data security, and reduced reliance on centralized cloud infrastructure. These benefits are crucial for applications requiring real-time data processing or strict security measures. Despite these advantages, edge devices operating within edge clusters are often underutilized. This inefficiency is mainly due to the absence of a holistic performance profiling mechanism which can help dynamically adjust the desired system configuration for a given workload. Since edge computing environments involve a complex interplay between CPU frequency, power consumption, and application performance, a deeper understanding of these correlations is essential. By uncovering these relationships, it becomes possible to make informed decisions that enhance both computational efficiency and energy savings. To address this gap, this paper evaluates the power consumption and performance characteristics of a single processing node within an edge cluster using a synthetic microbenchmark by varying the workload size and CPU frequency. The results show how an optimal measure can lead to optimized usage of edge resources, given both performance and power consumption.