Nilekani Centre at AI4Bharat
Abstract:Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by question's language reasoning.
Abstract:Large Language Models (LLMs) exhibit remarkable multilingual generalization despite being predominantly trained on English-centric corpora. A fundamental question arises: how do LLMs achieve such robust multilingual capabilities? For non-Latin script languages, we investigate the role of romanization - the representation of non-Latin scripts using Latin characters - as a bridge in multilingual processing. Using mechanistic interpretability techniques, we analyze next-token generation and find that intermediate layers frequently represent target words in romanized form before transitioning to native script, a phenomenon we term Latent Romanization. Further, through activation patching experiments, we demonstrate that LLMs encode semantic concepts similarly across native and romanized scripts, suggesting a shared underlying representation. Additionally in translation towards non Latin languages, our findings reveal that when the target language is in romanized form, its representations emerge earlier in the model's layers compared to native script. These insights contribute to a deeper understanding of multilingual representation in LLMs and highlight the implicit role of romanization in facilitating language transfer. Our work provides new directions for potentially improving multilingual language modeling and interpretability.