Abstract:Quantization of foundational models (FMs) is significantly more challenging than traditional DNNs due to the emergence of large magnitude features called outliers. Existing outlier-aware algorithm/architecture co-design techniques either use mixed-precision, retaining outliers at high precision but compromise hardware efficiency, or quantize inliers and outliers at the same precision, improving hardware efficiency at the cost of accuracy. To address this mutual exclusivity, in this paper, we propose MicroScopiQ, a novel co-design technique that leverages pruning to complement outlier-aware quantization. MicroScopiQ retains outliers at higher precision while pruning a certain fraction of least important weights to distribute the additional outlier bits; ensuring high accuracy, aligned memory and hardware efficiency. We design a high-throughput, low overhead accelerator architecture composed of simple multi-precision INT processing elements and a novel network-on-chip called ReCoN that efficiently abstracts the complexity of supporting high-precision outliers. Additionally, unlike existing alternatives, MicroScopiQ does not assume any locality of outlier weights, enabling applicability to a broad range of FMs. Extensive experiments across various quantization settings show that MicroScopiQ achieves SoTA quantization performance while simultaneously improving inference performance by 3x and reducing energy by 2x over existing alternatives.
Abstract:We present CLAMP-ViT, a data-free post-training quantization method for vision transformers (ViTs). We identify the limitations of recent techniques, notably their inability to leverage meaningful inter-patch relationships, leading to the generation of simplistic and semantically vague data, impacting quantization accuracy. CLAMP-ViT employs a two-stage approach, cyclically adapting between data generation and model quantization. Specifically, we incorporate a patch-level contrastive learning scheme to generate richer, semantically meaningful data. Furthermore, we leverage contrastive learning in layer-wise evolutionary search for fixed- and mixed-precision quantization to identify optimal quantization parameters while mitigating the effects of a non-smooth loss landscape. Extensive evaluations across various vision tasks demonstrate the superiority of CLAMP-ViT, with performance improvements of up to 3% in top-1 accuracy for classification, 0.6 mAP for object detection, and 1.5 mIoU for segmentation at similar or better compression ratio over existing alternatives. Code is available at https://github.com/georgia-tech-synergy-lab/CLAMP-ViT.git
Abstract:Traditional Deep Neural Network (DNN) quantization methods using integer, fixed-point, or floating-point data types struggle to capture diverse DNN parameter distributions at low precision, and often require large silicon overhead and intensive quantization-aware training. In this study, we introduce Logarithmic Posits (LP), an adaptive, hardware-friendly data type inspired by posits that dynamically adapts to DNN weight/activation distributions by parameterizing LP bit fields. We also develop a novel genetic-algorithm based framework, LP Quantization (LPQ), to find optimal layer-wise LP parameters while reducing representational divergence between quantized and full-precision models through a novel global-local contrastive objective. Additionally, we design a unified mixed-precision LP accelerator (LPA) architecture comprising of processing elements (PEs) incorporating LP in the computational datapath. Our algorithm-hardware co-design demonstrates on average <1% drop in top-1 accuracy across various CNN and ViT models. It also achieves ~ 2x improvements in performance per unit area and 2.2x gains in energy efficiency compared to state-of-the-art quantization accelerators using different data types.