Abstract:The advent of online social networks has facilitated fast and wide spread of information. However, some users, especially members of minority groups, may be less likely to receive information spreading on the network, due to their disadvantaged network position. We study the optimization problem of adding new connections to a network to enhance fairness in information access among different demographic groups. We provide a concrete formulation of this problem where information access is measured in terms of resistance distance, {offering a new perspective that emphasizes global network structure and multi-path connectivity.} The problem is shown to be NP-hard. We propose a simple greedy algorithm which turns out to output accurate solutions, but its run time is cubic, which makes it undesirable for large networks. As our main technical contribution, we reduce its time complexity to linear, leveraging several novel approximation techniques. In addition to our theoretical findings, we also conduct an extensive set of experiments using both real-world and synthetic datasets. We demonstrate that our linear-time algorithm can produce accurate solutions for networks with millions of nodes.
Abstract:Message passing is the core operation in graph neural networks, where each node updates its embeddings by aggregating information from its neighbors. However, in deep architectures, this process often leads to diminished expressiveness. A popular solution is to use residual connections, where the input from the current (or initial) layer is added to aggregated neighbor information to preserve embeddings across layers. Following a recent line of research, we investigate an adaptive residual scheme in which different nodes have varying residual strengths. We prove that this approach prevents oversmoothing; particularly, we show that the Dirichlet energy of the embeddings remains bounded away from zero. This is the first theoretical guarantee not only for the adaptive setting, but also for static residual connections (where residual strengths are shared across nodes) with activation functions. Furthermore, extensive experiments show that this adaptive approach outperforms standard and state-of-the-art message passing mechanisms, especially on heterophilic graphs. To improve the time complexity of our approach, we introduce a variant in which residual strengths are not learned but instead set heuristically, a choice that performs as well as the learnable version.
Abstract:Graph Neural Networks (GNNs) have achieved significant success in addressing node classification tasks. However, the effectiveness of traditional GNNs degrades on heterophilic graphs, where connected nodes often belong to different labels or properties. While recent work has introduced mechanisms to improve GNN performance under heterophily, certain key limitations still exist. Most existing models apply a fixed aggregation depth across all nodes, overlooking the fact that nodes may require different propagation depths based on their local homophily levels and neighborhood structures. Moreover, many methods are tailored to either homophilic or heterophilic settings, lacking the flexibility to generalize across both regimes. To address these challenges, we develop a theoretical framework that links local structural and label characteristics to information propagation dynamics at the node level. Our analysis shows that optimal aggregation depth varies across nodes and is critical for preserving class-discriminative information. Guided by this insight, we propose a novel adaptive-depth GNN architecture that dynamically selects node-specific aggregation depths using theoretically grounded metrics. Our method seamlessly adapts to both homophilic and heterophilic patterns within a unified model. Extensive experiments demonstrate that our approach consistently enhances the performance of standard GNN backbones across diverse benchmarks.
Abstract:Random walk centrality is a fundamental metric in graph mining for quantifying node importance and influence, defined as the weighted average of hitting times to a node from all other nodes. Despite its ability to capture rich graph structural information and its wide range of applications, computing this measure for large networks remains impractical due to the computational demands of existing methods. In this paper, we present a novel formulation of random walk centrality, underpinning two scalable algorithms: one leveraging approximate Cholesky factorization and sparse inverse estimation, while the other sampling rooted spanning trees. Both algorithms operate in near-linear time and provide strong approximation guarantees. Extensive experiments on large real-world networks, including one with over 10 million nodes, demonstrate the efficiency and approximation quality of the proposed algorithms.
Abstract:In recent years, there has been a growing effort to develop effective and efficient algorithms for fake account detection in online social networks. This survey comprehensively reviews existing methods, with a focus on graph-based techniques that utilise topological features of social graphs (in addition to account information, such as their shared contents and profile data) to distinguish between fake and real accounts. We provide several categorisations of these methods (for example, based on techniques used, input data, and detection time), discuss their strengths and limitations, and explain how these methods connect in the broader context. We also investigate the available datasets, including both real-world data and synthesised models. We conclude the paper by proposing several potential avenues for future research.
Abstract:Graph Neural Networks (GNNs) have demonstrated strong representation learning capabilities for graph-based tasks. Recent advances on GNNs leverage geometric properties, such as curvature, to enhance its representation capabilities by modeling complex connectivity patterns and information flow within graphs. However, most existing approaches focus solely on discrete graph topology, overlooking diffusion dynamics and task-specific dependencies essential for effective learning. To address this, we propose integrating Bakry-\'Emery curvature, which captures both structural and task-driven aspects of information propagation. We develop an efficient, learnable approximation strategy, making curvature computation scalable for large graphs. Furthermore, we introduce an adaptive depth mechanism that dynamically adjusts message-passing layers per vertex based on its curvature, ensuring efficient propagation. Our theoretical analysis establishes a link between curvature and feature distinctiveness, showing that high-curvature vertices require fewer layers, while low-curvature ones benefit from deeper propagation. Extensive experiments on benchmark datasets validate the effectiveness of our approach, showing consistent performance improvements across diverse graph learning tasks.
Abstract:Influence maximization is key topic in data mining, with broad applications in social network analysis and viral marketing. In recent years, researchers have increasingly turned to machine learning techniques to address this problem. They have developed methods to learn the underlying diffusion processes in a data-driven manner, which enhances the generalizability of the solution, and have designed optimization objectives to identify the optimal seed set. Nonetheless, two fundamental gaps remain unsolved: (1) Graph Neural Networks (GNNs) are increasingly used to learn diffusion models, but in their traditional form, they often fail to capture the complex dynamics of influence diffusion, (2) Designing optimization objectives is challenging due to combinatorial explosion when solving this problem. To address these challenges, we propose a novel framework, DeepSN. Our framework employs sheaf neural diffusion to learn diverse influence patterns in a data-driven, end-to-end manner, providing enhanced separability in capturing diffusion characteristics. We also propose an optimization technique that accounts for overlapping influence between vertices, which helps to reduce the search space and identify the optimal seed set effectively and efficiently. Finally, we conduct extensive experiments on both synthetic and real-world datasets to demonstrate the effectiveness of our framework.




Abstract:Consider an undirected graph G, representing a social network, where each node is blue or red, corresponding to positive or negative opinion on a topic. In the voter model, in discrete time rounds, each node picks a neighbour uniformly at random and adopts its colour. Despite its significant popularity, this model does not capture some fundamental real-world characteristics such as the difference in the strengths of individuals connections, individuals with neutral opinion on a topic, and individuals who are reluctant to update their opinion. To address these issues, we introduce and study a generalisation of the voter model. Motivating by campaigning strategies, we study the problem of selecting a set of seeds blue nodes to maximise the expected number of blue nodes after some rounds. We prove that the problem is NP- hard and provide a polynomial time approximation algorithm with the best possible approximation guarantee. Our experiments on real-world and synthetic graph data demonstrate that the proposed algorithm outperforms other algorithms. We also investigate the convergence properties of the model. We prove that the process could take an exponential number of rounds to converge. However, if we limit ourselves to strongly connected graphs, the convergence time is polynomial and the period (the number of states in convergence) divides the length of all cycles in the graph.
Abstract:This paper explores recommender systems in social networks which leverage information such as item rating, intra-item similarities, and trust graph. We demonstrate that item-rating information is more influential than other information types in a collaborative filtering approach. The trust graph-based approaches were found to be more robust to network adversarial attacks due to hard-to-manipulate trust structures. Intra-item information, although sub-optimal in isolation, enhances the consistency of predictions and lower-end performance when fused with other information forms. Additionally, the Weighted Average framework is introduced, enabling the construction of recommendation systems around any user-to-user similarity metric.




Abstract:Consider a directed network where each node is either red (using the red product), blue (using the blue product), or uncolored (undecided). Then in each round, an uncolored node chooses red (resp. blue) with some probability proportional to the number of its red (resp. blue) out-neighbors. What is the best strategy to maximize the expected final number of red nodes given the budget to select $k$ red seed nodes? After proving that this problem is computationally hard, we provide a polynomial time approximation algorithm with the best possible approximation guarantee, building on the monotonicity and submodularity of the objective function and exploiting the Monte Carlo method. Furthermore, our experiments on various real-world and synthetic networks demonstrate that our proposed algorithm outperforms other algorithms. Additionally, we investigate the convergence time of the aforementioned process both theoretically and experimentally. In particular, we prove several tight bounds on the convergence time in terms of different graph parameters, such as the number of nodes/edges, maximum out-degree and diameter, by developing novel proof techniques.