Abstract:Sequential recommender systems must model long-range user behavior while operating under strict memory and latency constraints. Transformer-based approaches achieve strong accuracy but suffer from quadratic attention complexity, forcing aggressive truncation of user histories and limiting their practicality for long-horizon modeling. This paper presents HoloMambaRec, a lightweight sequential recommendation architecture that combines holographic reduced representations for attribute-aware embedding with a selective state space encoder for linear-time sequence processing. Item and attribute information are bound using circular convolution, preserving embedding dimensionality while encoding structured metadata. A shallow selective state space backbone, inspired by recent Mamba-style models, enables efficient training and constant-time recurrent inference. Experiments on Amazon Beauty and MovieLens-1M datasets demonstrate that HoloMambaRec consistently outperforms SASRec and achieves competitive performance with GRU4Rec under a constrained 10-epoch training budget, while maintaining substantially lower memory complexity. The design further incorporates forward-compatible mechanisms for temporal bundling and inference-time compression, positioning HoloMambaRec as a practical and extensible alternative for scalable, metadata-aware sequential recommendation.
Abstract:Modern cloud-native systems increasingly rely on multi-cluster deployments to support scalability, resilience, and geographic distribution. However, existing resource management approaches remain largely reactive and cluster-centric, limiting their ability to optimize system-wide behavior under dynamic workloads. These limitations result in inefficient resource utilization, delayed adaptation, and increased operational overhead across distributed environments. This paper presents an AI-driven framework for adaptive resource optimization in multi-cluster cloud systems. The proposed approach integrates predictive learning, policy-aware decision-making, and continuous feedback to enable proactive and coordinated resource management across clusters. By analyzing cross-cluster telemetry and historical execution patterns, the framework dynamically adjusts resource allocation to balance performance, cost, and reliability objectives. A prototype implementation demonstrates improved resource efficiency, faster stabilization during workload fluctuations, and reduced performance variability compared to conventional reactive approaches. The results highlight the effectiveness of intelligent, self-adaptive infrastructure management as a key enabler for scalable and resilient cloud platforms.
Abstract:Cloud data pipelines increasingly operate under dynamic workloads, evolving schemas, cost constraints, and strict governance requirements. Despite advances in cloud-native orchestration frameworks, most production pipelines rely on static configurations and reactive operational practices, resulting in prolonged recovery times, inefficient resource utilization, and high manual overhead. This paper presents Agentic Cloud Data Engineering, a policy-aware control architecture that integrates bounded AI agents into the governance and control plane of cloud data pipelines. In Agentic Cloud Data Engineering platform, specialized agents analyze pipeline telemetry and metadata, reason over declarative cost and compliance policies, and propose constrained operational actions such as adaptive resource reconfiguration, schema reconciliation, and automated failure recovery. All agent actions are validated against governance policies to ensure predictable and auditable behavior. We evaluate Agentic Cloud Data Engineering platform using representative batch and streaming analytics workloads constructed from public enterprise-style datasets. Experimental results show that Agentic Cloud Data Engineering platform reduces mean pipeline recovery time by up to 45%, lowers operational cost by approximately 25%, and decreases manual intervention events by over 70% compared to static orchestration, while maintaining data freshness and policy compliance. These results demonstrate that policy-bounded agentic control provides an effective and practical approach for governing cloud data pipelines in enterprise environments.