Abstract:Sequential recommender systems must model long-range user behavior while operating under strict memory and latency constraints. Transformer-based approaches achieve strong accuracy but suffer from quadratic attention complexity, forcing aggressive truncation of user histories and limiting their practicality for long-horizon modeling. This paper presents HoloMambaRec, a lightweight sequential recommendation architecture that combines holographic reduced representations for attribute-aware embedding with a selective state space encoder for linear-time sequence processing. Item and attribute information are bound using circular convolution, preserving embedding dimensionality while encoding structured metadata. A shallow selective state space backbone, inspired by recent Mamba-style models, enables efficient training and constant-time recurrent inference. Experiments on Amazon Beauty and MovieLens-1M datasets demonstrate that HoloMambaRec consistently outperforms SASRec and achieves competitive performance with GRU4Rec under a constrained 10-epoch training budget, while maintaining substantially lower memory complexity. The design further incorporates forward-compatible mechanisms for temporal bundling and inference-time compression, positioning HoloMambaRec as a practical and extensible alternative for scalable, metadata-aware sequential recommendation.
Abstract:Modern cloud-native systems increasingly rely on multi-cluster deployments to support scalability, resilience, and geographic distribution. However, existing resource management approaches remain largely reactive and cluster-centric, limiting their ability to optimize system-wide behavior under dynamic workloads. These limitations result in inefficient resource utilization, delayed adaptation, and increased operational overhead across distributed environments. This paper presents an AI-driven framework for adaptive resource optimization in multi-cluster cloud systems. The proposed approach integrates predictive learning, policy-aware decision-making, and continuous feedback to enable proactive and coordinated resource management across clusters. By analyzing cross-cluster telemetry and historical execution patterns, the framework dynamically adjusts resource allocation to balance performance, cost, and reliability objectives. A prototype implementation demonstrates improved resource efficiency, faster stabilization during workload fluctuations, and reduced performance variability compared to conventional reactive approaches. The results highlight the effectiveness of intelligent, self-adaptive infrastructure management as a key enabler for scalable and resilient cloud platforms.