Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Reese Pathak, Rajat Sen, Weihao Kong, Abhimanyu Das

Mixture models arise in many regression problems, but most methods have seen limited adoption partly due to these algorithms' highly-tailored and model-specific nature. On the other hand, transformers are flexible, neural sequence models that present the intriguing possibility of providing general-purpose prediction methods, even in this mixture setting. In this work, we investigate the hypothesis that transformers can learn an optimal predictor for mixtures of regressions. We construct a generative process for a mixture of linear regressions for which the decision-theoretic optimal procedure is given by data-driven exponential weights on a finite set of parameters. We observe that transformers achieve low mean-squared error on data generated via this process. By probing the transformer's output at inference time, we also show that transformers typically make predictions that are close to the optimal predictor. Our experiments also demonstrate that transformers can learn mixtures of regressions in a sample-efficient fashion and are somewhat robust to distribution shifts. We complement our experimental observations by proving constructively that the decision-theoretic optimal procedure is indeed implementable by a transformer.

Via

Abhimanyu Das, Weihao Kong, Rajat Sen, Yichen Zhou

Motivated by recent advances in large language models for Natural Language Processing (NLP), we design a time-series foundation model for forecasting whose out-of-the-box zero-shot performance on a variety of public datasets comes close to the accuracy of state-of-the-art supervised forecasting models for each individual dataset. Our model is based on pretraining a patched-decoder style attention model on a large time-series corpus, and can work well across different forecasting history lengths, prediction lengths and temporal granularities.

Via

Ayush Jain, Rajat Sen, Weihao Kong, Abhimanyu Das, Alon Orlitsky

In many learning applications, data are collected from multiple sources, each providing a \emph{batch} of samples that by itself is insufficient to learn its input-output relationship. A common approach assumes that the sources fall in one of several unknown subgroups, each with an unknown input distribution and input-output relationship. We consider one of this setup's most fundamental and important manifestations where the output is a noisy linear combination of the inputs, and there are $k$ subgroups, each with its own regression vector. Prior work~\cite{kong2020meta} showed that with abundant small-batches, the regression vectors can be learned with only few, $\tilde\Omega( k^{3/2})$, batches of medium-size with $\tilde\Omega(\sqrt k)$ samples each. However, the paper requires that the input distribution for all $k$ subgroups be isotropic Gaussian, and states that removing this assumption is an ``interesting and challenging problem". We propose a novel gradient-based algorithm that improves on the existing results in several ways. It extends the applicability of the algorithm by: (1) allowing the subgroups' underlying input distributions to be different, unknown, and heavy-tailed; (2) recovering all subgroups followed by a significant proportion of batches even for infinite $k$; (3) removing the separation requirement between the regression vectors; (4) reducing the number of batches and allowing smaller batch sizes.

Via

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, Rose Yu

Recent work has shown that simple linear models can outperform several Transformer based approaches in long term time-series forecasting. Motivated by this, we propose a Multi-layer Perceptron (MLP) based encoder-decoder model, Time-series Dense Encoder (TiDE), for long-term time-series forecasting that enjoys the simplicity and speed of linear models while also being able to handle covariates and non-linear dependencies. Theoretically, we prove that the simplest linear analogue of our model can achieve near optimal error rate for linear dynamical systems (LDS) under some assumptions. Empirically, we show that our method can match or outperform prior approaches on popular long-term time-series forecasting benchmarks while being 5-10x faster than the best Transformer based model.

Via

Abhimanyu Das, Ayush Jain, Weihao Kong, Rajat Sen

We begin the study of list-decodable linear regression using batches. In this setting only an $\alpha \in (0,1]$ fraction of the batches are genuine. Each genuine batch contains $\ge n$ i.i.d. samples from a common unknown distribution and the remaining batches may contain arbitrary or even adversarial samples. We derive a polynomial time algorithm that for any $n\ge \tilde \Omega(1/\alpha)$ returns a list of size $\mathcal O(1/\alpha^2)$ such that one of the items in the list is close to the true regression parameter. The algorithm requires only $\tilde{\mathcal{O}}(d/\alpha^2)$ genuine batches and works under fairly general assumptions on the distribution. The results demonstrate the utility of batch structure, which allows for the first polynomial time algorithm for list-decodable regression, which may be impossible for the non-batch setting, as suggested by a recent SQ lower bound \cite{diakonikolas2021statistical} for the non-batch setting.

Via

Weihao Kong, Rajat Sen, Pranjal Awasthi, Abhimanyu Das

We study the problem of learning generalized linear models under adversarial corruptions. We analyze a classical heuristic called the iterative trimmed maximum likelihood estimator which is known to be effective against label corruptions in practice. Under label corruptions, we prove that this simple estimator achieves minimax near-optimal risk on a wide range of generalized linear models, including Gaussian regression, Poisson regression and Binomial regression. Finally, we extend the estimator to the more challenging setting of label and covariate corruptions and demonstrate its robustness and optimality in that setting as well.

Via

Abhimanyu Das, Weihao Kong, Biswajit Paria, Rajat Sen

Hierarchical forecasting is a key problem in many practical multivariate forecasting applications - the goal is to obtain coherent predictions for a large number of correlated time series that are arranged in a pre-specified tree hierarchy. In this paper, we present a probabilistic top-down approach to hierarchical forecasting that uses a novel attention-based RNN model to learn the distribution of the proportions according to which each parent prediction is split among its children nodes at any point in time. These probabilistic proportions are then coupled with an independent univariate probabilistic forecasting model (such as Prophet or STS) for the root time series. The resulting forecasts are computed in a top-down fashion and are naturally coherent, and also support probabilistic predictions over all time series in the hierarchy. We provide theoretical justification for the superiority of our top-down approach compared to traditional bottom-up hierarchical modeling. Finally, we experiment on three public datasets and demonstrate significantly improved probabilistic forecasts, compared to state-of-the-art probabilistic hierarchical models.

Via

Ashok Cutkosky, Chris Dann, Abhimanyu Das, Qiuyi, Zhang

We study the setting of optimizing with bandit feedback with additional prior knowledge provided to the learner in the form of an initial hint of the optimal action. We present a novel algorithm for stochastic linear bandits that uses this hint to improve its regret to $\tilde O(\sqrt{T})$ when the hint is accurate, while maintaining a minimax-optimal $\tilde O(d\sqrt{T})$ regret independent of the quality of the hint. Furthermore, we provide a Pareto frontier of tight tradeoffs between best-case and worst-case regret, with matching lower bounds. Perhaps surprisingly, our work shows that leveraging a hint shows provable gains without sacrificing worst-case performance, implying that our algorithm adapts to the quality of the hint for free. We also provide an extension of our algorithm to the case of $m$ initial hints, showing that we can achieve a $\tilde O(m^{2/3}\sqrt{T})$ regret.

Via

Pranjal Awasthi, Abhimanyu Das, Rajat Sen, Ananda Theertha Suresh

We advocate for a practical Maximum Likelihood Estimation (MLE) approach for regression and forecasting, as an alternative to the typical approach of Empirical Risk Minimization (ERM) for a specific target metric. This approach is better suited to capture inductive biases such as prior domain knowledge in datasets, and can output post-hoc estimators at inference time that can optimize different types of target metrics. We present theoretical results to demonstrate that our approach is always competitive with any estimator for the target metric under some general conditions, and in many practical settings (such as Poisson Regression) can actually be much superior to ERM. We demonstrate empirically that our method instantiated with a well-designed general purpose mixture likelihood family can obtain superior performance over ERM for a variety of tasks across time-series forecasting and regression datasets with different data distributions.

Via