Topic:Fake News Detection
What is Fake News Detection? Fake news detection is a natural language processing task that involves identifying and classifying news articles or other types of text as real or fake. The goal of fake news detection is to develop algorithms that can automatically identify and flag fake news articles, which can be used to combat misinformation and promote the dissemination of accurate information.
Papers and Code
Dec 07, 2024
Abstract:The rapid proliferation of fake news on social media threatens social stability, creating an urgent demand for more effective detection methods. While many promising approaches have emerged, most rely on content analysis with limited semantic depth, leading to suboptimal comprehension of news content.To address this limitation, capturing broader-range semantics is essential yet challenging, as it introduces two primary types of noise: fully connecting sentences in news graphs often adds unnecessary structural noise, while highly similar but authenticity-irrelevant sentences introduce feature noise, complicating the detection process. To tackle these issues, we propose BREAK, a broad-range semantics model for fake news detection that leverages a fully connected graph to capture comprehensive semantics while employing dual denoising modules to minimize both structural and feature noise. The semantic structure denoising module balances the graph's connectivity by iteratively refining it between two bounds: a sequence-based structure as a lower bound and a fully connected graph as the upper bound. This refinement uncovers label-relevant semantic interrelations structures. Meanwhile, the semantic feature denoising module reduces noise from similar semantics by diversifying representations, aligning distinct outputs from the denoised graph and sequence encoders using KL-divergence to achieve feature diversification in high-dimensional space. The two modules are jointly optimized in a bi-level framework, enhancing the integration of denoised semantics into a comprehensive representation for detection. Extensive experiments across four datasets demonstrate that BREAK significantly outperforms existing methods in identifying fake news. Code is available at https://anonymous.4open.science/r/BREAK.
Via

Dec 02, 2024
Abstract:In today's digital age, fake news has become a major problem that has serious consequences, ranging from social unrest to political upheaval. To address this issue, new methods for detecting and mitigating fake news are required. In this work, we propose to incorporate contextual and network-aware features into the detection process. This involves analyzing not only the content of a news article but also the context in which it was shared and the network of users who shared it, i.e., the information diffusion. Thus, we propose GETAE, \underline{G}raph Information \underline{E}nhanced Deep Neural Ne\underline{t}work Ensemble \underline{A}rchitectur\underline{E} for Fake News Detection, a novel ensemble architecture that uses textual content together with the social interactions to improve fake news detection. GETAE contains two Branches: the Text Branch and the Propagation Branch. The Text Branch uses Word and Transformer Embeddings and a Deep Neural Network based on feed-forward and bidirectional Recurrent Neural Networks (\textsc{[Bi]RNN}) for learning novel contextual features and creating a novel Text Content Embedding. The Propagation Branch considers the information propagation within the graph network and proposes a Deep Learning architecture that employs Node Embeddings to create novel Propagation Embedding. GETAE Ensemble combines the two novel embeddings, i.e., Text Content Embedding and Propagation Embedding, to create a novel \textit{Propagation-Enhanced Content Embedding} which is afterward used for classification. The experimental results obtained on two real-world publicly available datasets, i.e., Twitter15 and Twitter16, prove that using this approach improves fake news detection and outperforms state-of-the-art models.
Via

Dec 13, 2024
Abstract:Mis- and disinformation, commonly collectively called fake news, continue to menace society. Perhaps, the impact of this age-old problem is presently most plain in politics and healthcare. However, fake news is affecting an increasing number of domains. It takes many different forms and continues to shapeshift as technology advances. Though it arguably most widely spreads in textual form, e.g., through social media posts and blog articles. Thus, it is imperative to thwart the spread of textual misinformation, which necessitates its initial detection. This thesis contributes to the creation of representations that are useful for detecting misinformation. Firstly, it develops a novel method for extracting textual features from news articles for misinformation detection. These features harness the disparity between the thematic coherence of authentic and false news stories. In other words, the composition of themes discussed in both groups significantly differs as the story progresses. Secondly, it demonstrates the effectiveness of topic features for fake news detection, using classification and clustering. Clustering is particularly useful because it alleviates the need for a labelled dataset, which can be labour-intensive and time-consuming to amass. More generally, it contributes towards a better understanding of misinformation and ways of detecting it using Machine Learning and Natural Language Processing.
* Masters Thesis, 106 pages, 11 figures
Via

Nov 19, 2024
Abstract:Social graph-based fake news detection aims to identify news articles containing false information by utilizing social contexts, e.g., user information, tweets and comments. However, conventional methods are evaluated under less realistic scenarios, where the model has access to future knowledge on article-related and context-related data during training. In this work, we newly formalize a more realistic evaluation scheme that mimics real-world scenarios, where the data is temporality-aware and the detection model can only be trained on data collected up to a certain point in time. We show that the discriminative capabilities of conventional methods decrease sharply under this new setting, and further propose DAWN, a method more applicable to such scenarios. Our empirical findings indicate that later engagements (e.g., consuming or reposting news) contribute more to noisy edges that link real news-fake news pairs in the social graph. Motivated by this, we utilize feature representations of engagement earliness to guide an edge weight estimator to suppress the weights of such noisy edges, thereby enhancing the detection performance of DAWN. Through extensive experiments, we demonstrate that DAWN outperforms existing fake news detection methods under real-world environments. The source code is available at https://github.com/LeeJunmo/DAWN.
* WSDM 2025
Via

Nov 14, 2024
Abstract:The spread of fake news on social media poses significant threats to individuals and society. Text-based and graph-based models have been employed for fake news detection by analysing news content and propagation networks, showing promising results in specific scenarios. However, these data-driven models heavily rely on pre-existing in-distribution data for training, limiting their performance when confronted with fake news from emerging or previously unseen domains, known as out-of-distribution (OOD) data. Tackling OOD fake news is a challenging yet critical task. In this paper, we introduce the Causal Subgraph-oriented Domain Adaptive Fake News Detection (CSDA) model, designed to enhance zero-shot fake news detection by extracting causal substructures from propagation graphs using in-distribution data and generalising this approach to OOD data. The model employs a graph neural network based mask generation process to identify dominant nodes and edges within the propagation graph, using these substructures for fake news detection. Additionally, the performance of CSDA is further improved through contrastive learning in few-shot scenarios, where a limited amount of OOD data is available for training. Extensive experiments on public social media datasets demonstrate that CSDA effectively handles OOD fake news detection, achieving a 7 to 16 percents accuracy improvement over other state-of-the-art models.
* 9 pages, 2 figures, 5 tables
Via

Jan 02, 2025
Abstract:The rapid advancement of deepfake technologies, specifically designed to create incredibly lifelike facial imagery and video content, has ignited a remarkable level of interest and curiosity across many fields, including forensic analysis, cybersecurity and the innovative creation of digital characters. By harnessing the latest breakthroughs in deep learning methods, such as Generative Adversarial Networks, Variational Autoencoders, Few-Shot Learning Strategies, and Transformers, the outcomes achieved in generating deepfakes have been nothing short of astounding and transformative. Also, the ongoing evolution of detection technologies is being developed to counteract the potential for misuse associated with deepfakes, effectively addressing critical concerns that range from political manipulation to the dissemination of fake news and the ever-growing issue of cyberbullying. This comprehensive review paper meticulously investigates the most recent developments in deepfake generation and detection, including around 400 publications, providing an in-depth analysis of the cutting-edge innovations shaping this rapidly evolving landscape. Starting with a thorough examination of systematic literature review methodologies, we embark on a journey that delves into the complex technical intricacies inherent in the various techniques used for deepfake generation, comprehensively addressing the challenges faced, potential solutions available, and the nuanced details surrounding manipulation formulations. Subsequently, the paper is dedicated to accurately benchmarking leading approaches against prominent datasets, offering thorough assessments of the contributions that have significantly impacted these vital domains. Ultimately, we engage in a thoughtful discussion of the existing challenges, paving the way for continuous advancements in this critical and ever-dynamic study area.
Via

Nov 18, 2024
Abstract:Numerous studies have been proposed to detect fake news focusing on multi-modalities based on machine and/or deep learning. However, studies focusing on graph-based structures using geometric deep learning are lacking. To address this challenge, we introduce the Multimodal Adaptive Graph-based Intelligent Classification (aptly referred to as MAGIC) for fake news detection. Specifically, the Encoder Representations from Transformers was used for text vectorization whilst ResNet50 was used for images. A comprehensive information interaction graph was built using the adaptive Graph Attention Network before classifying the multimodal input through the Softmax function. MAGIC was trained and tested on two fake news datasets, that is, Fakeddit (English) and Multimodal Fake News Detection (Chinese), with the model achieving an accuracy of 98.8\% and 86.3\%, respectively. Ablation experiments also revealed MAGIC to yield superior performance across both the datasets. Findings show that a graph-based deep learning adaptive model is effective in detecting multimodal fake news, surpassing state-of-the-art methods.
* 8 pages
Via

Nov 16, 2024
Abstract:Nowadays, the rapid diffusion of fake news poses a significant problem, as it can spread misinformation and confusion. This paper aims to develop an advanced machine learning solution for detecting fake news articles. Leveraging a comprehensive dataset of news articles, including 23,502 fake news articles and 21,417 accurate news articles, we implemented and evaluated three machine-learning models. Our dataset, curated from diverse sources, provides rich textual content categorized into title, text, subject, and Date features. These features are essential for training robust classification models to distinguish between fake and authentic news articles. The initial model employed a Long Short-Term Memory (LSTM) network, achieving an accuracy of 94%. The second model improved upon this by incorporating additional regularization techniques and fine-tuning hyperparameters, resulting in a 97% accuracy. The final model combined the strengths of previous architectures with advanced optimization strategies, achieving a peak accuracy of 98%. These results demonstrate the effectiveness of our approach in identifying fake news with high precision. Implementing these models showcases significant advancements in natural language processing and machine learning techniques, contributing valuable tools for combating misinformation. Our work highlights the potential for deploying such models in real-world applications, providing a reliable method for automated fake news detection and enhancing the credibility of news dissemination.
* 6 pages, 7 figures, 2024 IEEE International Conference on Signal
Processing, Information, Communication and Systems (SPICSCON)
Via

Nov 19, 2024
Abstract:The rapid spread of misinformation, particularly through online platforms, underscores the urgent need for reliable detection systems. This study explores the utilization of machine learning and natural language processing, specifically Support Vector Machines (SVM) and BERT, to detect news that are fake. We employ three distinct text vectorization methods for SVM: Term Frequency Inverse Document Frequency (TF-IDF), Word2Vec, and Bag of Words (BoW) evaluating their effectiveness in distinguishing between genuine and fake news. Additionally, we compare these methods against the transformer large language model, BERT. Our comprehensive approach includes detailed preprocessing steps, rigorous model implementation, and thorough evaluation to determine the most effective techniques. The results demonstrate that while BERT achieves superior accuracy with 99.98% and an F1-score of 0.9998, the SVM model with a linear kernel and BoW vectorization also performs exceptionally well, achieving 99.81% accuracy and an F1-score of 0.9980. These findings highlight that, despite BERT's superior performance, SVM models with BoW and TF-IDF vectorization methods come remarkably close, offering highly competitive performance with the advantage of lower computational requirements.
* 6 pages, 3 tables and 6 Figures. Submitted to a conference
Via

Nov 15, 2024
Abstract:Short video platforms have become important channels for news dissemination, offering a highly engaging and immediate way for users to access current events and share information. However, these platforms have also emerged as significant conduits for the rapid spread of misinformation, as fake news and rumors can leverage the visual appeal and wide reach of short videos to circulate extensively among audiences. Existing fake news detection methods mainly rely on single-modal information, such as text or images, or apply only basic fusion techniques, limiting their ability to handle the complex, multi-layered information inherent in short videos. To address these limitations, this paper presents a novel fake news detection method based on multimodal information, designed to identify misinformation through a multi-level analysis of video content. This approach effectively utilizes different modal representations to generate a unified textual description, which is then fed into a large language model for comprehensive evaluation. The proposed framework successfully integrates multimodal features within videos, significantly enhancing the accuracy and reliability of fake news detection. Experimental results demonstrate that the proposed approach outperforms existing models in terms of accuracy, robustness, and utilization of multimodal information, achieving an accuracy of 90.93%, which is significantly higher than the best baseline model (SV-FEND) at 81.05%. Furthermore, case studies provide additional evidence of the effectiveness of the approach in accurately distinguishing between fake news, debunking content, and real incidents, highlighting its reliability and robustness in real-world applications.
* arXiv admin note: text overlap with arXiv:2211.10973 by other authors
Via
