What is Text To Sql? Text-to-SQL (or Text2SQL) is the task of translating natural language questions into SQL queries to retrieve information from or execute other tasks in relational databases. Text-to-SQL can also be abbreviated as NL2SQL.
Papers and Code
Jul 03, 2025
Abstract:The text-to-SQL task is an active challenge in Natural Language Processing. Many existing solutions focus on using black-box language models extended with specialized components within customized end-to-end text-to-SQL pipelines. While these solutions use both closed-source proprietary language models and coding-oriented open-source models, there is a lack of research regarding SQL-specific generative models. At the same time, recent advancements in self-correcting generation strategies show promise for improving the capabilities of existing architectures. The application of these concepts to the text-to-SQL task remains unexplored. In this paper, we introduce RetrySQL, a new approach to training text-to-SQL generation models. We prepare reasoning steps for reference SQL queries and then corrupt them to create retry data that contains both incorrect and corrected steps, divided with a special token. We continuously pre-train an open-source coding model with this data and demonstrate that retry steps yield an improvement of up to 4 percentage points in both overall and challenging execution accuracy metrics, compared to pre-training without retry data. Additionally, we confirm that supervised fine-tuning with LoRA is ineffective for learning from retry data and that full-parameter pre-training is a necessary requirement for that task. We showcase that the self-correcting behavior is learned by the model and the increase in downstream accuracy metrics is a result of this additional skill. Finally, we incorporate RetrySQL-trained models into the full text-to-SQL pipeline and showcase that they are competitive in terms of execution accuracy with proprietary models that contain orders of magnitude more parameters. RetrySQL demonstrates that self-correction can be learned in the text-to-SQL task and provides a novel way of improving generation accuracy for SQL-oriented language models.
Via

Jun 16, 2025
Abstract:This paper presents a system developed for SemEval 2025 Task 8: Question Answering (QA) over tabular data. Our approach integrates several key components: text-to-SQL and text-to-code generation modules, a self-correction mechanism, and a retrieval-augmented generation (RAG). Additionally, it includes an end-to-end (E2E) module, all orchestrated by a large language model (LLM). Through ablation studies, we analyzed the effects of different parts of our pipeline and identified the challenges that are still present in this field. During the evaluation phase of the competition, our solution achieved an accuracy of 80%, resulting in a top-13 ranking among the 38 participating teams. Our pipeline demonstrates a significant improvement in accuracy for open-source models and achieves a performance comparable to proprietary LLMs in QA tasks over tables. The code is available at GitHub repository.
* Accepted for publication at the 19th International Workshop on
Semantic Evaluation (SemEval-2025), to be held in conjunction with ACL 2025.
15 pages, 5 figures; full paper title was added
Via

Jun 13, 2025
Abstract:Schema linking is a critical step in Text-to-SQL task, aiming to accurately predict the table names and column names required for the SQL query based on the given question. However, current fine-tuning approaches for schema linking models employ a rote-learning paradigm, excessively optimizing for ground truth schema linking outcomes while compromising reasoning ability. This limitation arises because of the difficulty in acquiring a high-quality reasoning sample for downstream tasks. To address this, we propose Schema-R1, a reasoning schema linking model trained using reinforcement learning. Specifically, Schema-R1 consists of three key steps: constructing small batches of high-quality reasoning samples, supervised fine-tuning for cold-start initialization, and rule-based reinforcement learning training. The final results demonstrate that our method effectively enhances the reasoning ability of the schema linking model, achieving a 10\% improvement in filter accuracy compared to the existing method. Our code is available at https://github.com/hongWin/Schema-R1/.
* 11 pages, 3 figures, conference
Via

Jun 11, 2025
Abstract:The rise of Large Language Models (LLMs) has significantly advanced Text-to-SQL (NL2SQL) systems, yet evaluating the semantic equivalence of generated SQL remains a challenge, especially given ambiguous user queries and multiple valid SQL interpretations. This paper explores using LLMs to assess both semantic and a more practical "weak" semantic equivalence. We analyze common patterns of SQL equivalence and inequivalence, discuss challenges in LLM-based evaluation.
* 8 pages
Via

Jun 09, 2025
Abstract:Text-to-SQL enables non-experts to retrieve data from databases by converting natural language queries into SQL. However, state-of-the-art text-to-SQL studies rely on the BIRD dataset, which assumes that evidence is provided along with questions. Although BIRD facilitates research advancements, it assumes that users have expertise and domain knowledge, contradicting the fundamental goal of text-to-SQL. In addition, human-generated evidence in BIRD contains defects, including missing or erroneous evidence, which affects model performance. To address this issue, we propose SEED (System for Evidence Extraction and Domain knowledge generation), an approach that automatically generates evidence to improve performance and practical usability in real-world scenarios. SEED systematically analyzes database schema, description files, and values to extract relevant information. We evaluated SEED on BIRD and Spider, demonstrating that it significantly improves SQL generation accuracy in the no-evidence scenario, and in some cases, even outperforms the setting where BIRD evidence is provided. Our results highlight that SEED-generated evidence not only bridges the gap between research and real-world deployment but also improves the adaptability and robustness of text-to-SQL models. Our code is available at https://github.com/felix01189/SEED
* Proc. of IEEE ICDE Workshops (ICDEW), 2025
Via

Jun 11, 2025
Abstract:This paper presents a system developed for SemEval 2025 Task 8: Question Answering (QA) over tabular data. Our approach integrates several key components: text-to-SQL and text-to-code generation modules, a self-correction mechanism, and a retrieval-augmented generation (RAG). Additionally, it includes an end-to-end (E2E) module, all orchestrated by a large language model (LLM). Through ablation studies, we analyzed the effects of different parts of our pipeline and identified the challenges that are still present in this field. During the evaluation phase of the competition, our solution achieved an accuracy of 80%, resulting in a top-13 ranking among the 38 participating teams. Our pipeline demonstrates a significant improvement in accuracy for open-source models and achieves a performance comparable to proprietary LLMs in QA tasks over tables. The code is available at GitHub repository.
* Accepted for publication at the 19th International Workshop on
Semantic Evaluation (SemEval-2025), to be held in conjunction with ACL 2025.
15 pages, 5 figures
Via

Jun 12, 2025
Abstract:Retrieval-Augmented Generation (RAG) has demonstrated considerable effectiveness in open-domain question answering. However, when applied to heterogeneous documents, comprising both textual and tabular components, existing RAG approaches exhibit critical limitations. The prevailing practice of flattening tables and chunking strategies disrupts the intrinsic tabular structure, leads to information loss, and undermines the reasoning capabilities of LLMs in multi-hop, global queries. To address these challenges, we propose TableRAG, an hybrid framework that unifies textual understanding and complex manipulations over tabular data. TableRAG iteratively operates in four steps: context-sensitive query decomposition, text retrieval, SQL programming and execution, and compositional intermediate answer generation. We also develop HeteQA, a novel benchmark designed to evaluate the multi-hop heterogeneous reasoning capabilities. Experimental results demonstrate that TableRAG consistently outperforms existing baselines on both public datasets and our HeteQA, establishing a new state-of-the-art for heterogeneous document question answering. We release TableRAG at https://github.com/yxh-y/TableRAG/tree/main.
Via

Jun 08, 2025
Abstract:Recent advancements in large language models (LLMs) have significantly improved performance on the Text-to-SQL task. However, prior approaches typically rely on static, pre-processed database information provided at inference time, which limits the model's ability to fully understand the database contents. Without dynamic interaction, LLMs are constrained to fixed, human-provided context and cannot autonomously explore the underlying data. To address this limitation, we propose SDE-SQL, a framework that enables large language models to perform self-driven exploration of databases during inference. This is accomplished by generating and executing SQL probes, which allow the model to actively retrieve information from the database and iteratively update its understanding of the data. Unlike prior methods, SDE-SQL operates in a zero-shot setting, without relying on any question-SQL pairs as in-context demonstrations. When evaluated on the BIRD benchmark with Qwen2.5-72B-Instruct, SDE-SQL achieves an 8.02% relative improvement in execution accuracy over the vanilla Qwen2.5-72B-Instruct baseline, establishing a new state-of-the-art among methods based on open-source models without supervised fine-tuning (SFT) or model ensembling. Moreover, with SFT, the performance of SDE-SQL can be further enhanced, yielding an additional 0.52% improvement.
Via

Jun 04, 2025
Abstract:Text-to-SQL systems translate natural language (NL) questions into SQL queries, enabling non-technical users to interact with structured data. While large language models (LLMs) have shown promising results on the text-to-SQL task, they often produce semantically incorrect yet syntactically valid queries, with limited insight into their reliability. We propose SQLens, an end-to-end framework for fine-grained detection and correction of semantic errors in LLM-generated SQL. SQLens integrates error signals from both the underlying database and the LLM to identify potential semantic errors within SQL clauses. It further leverages these signals to guide query correction. Empirical results on two public benchmarks show that SQLens outperforms the best LLM-based self-evaluation method by 25.78% in F1 for error detection, and improves execution accuracy of out-of-the-box text-to-SQL systems by up to 20%.
Via

Jun 06, 2025
Abstract:In this work, we study the problem of code generation with a large language model (LLM), with a focus on generating SQL queries from natural language questions. We ask: Instead of using supervised fine tuning with text-code pairs, can we tune a model by having it interact with a database engine? We frame this problem as a reinforcement learning problem where the model receives execution-based feedback from the environment in the form of scalar rewards. These rewards penalize execution failures and assign positive values when a query returns a correct answer. We use the rewards within the Group Relative Policy Optimization (GRPO) framework. We use a tabular reasoning benchmark to test and evaluate our findings. We find that with only weak supervision in the form of question-answer pairs, RL-tuning improves the accuracy of model generated SQL code from 31.49 to 49.83 while reducing error percentage from 25.43% to 14.71%. This improvement allowed the model nearly match the performance performance to the larger SQLCoder-70B model. Our work demonstrates the potential of using execution-based feedback to improve symbolic reasoning capabilities of LLMs.
* Under review at EMNLP 2025
Via
