Topic:Stock Market Prediction
What is Stock Market Prediction? Stock market prediction is the process of forecasting the future performance of financial markets using machine learning models.
Papers and Code
May 02, 2025
Abstract:Predicting the price that has the least error and can provide the best and highest accuracy has been one of the most challenging issues and one of the most critical concerns among capital market activists and researchers. Therefore, a model that can solve problems and provide results with high accuracy is one of the topics of interest among researchers. In this project, using time series prediction models such as ARIMA to estimate the price, variables, and indicators related to technical analysis show the behavior of traders involved in involving psychological factors for the model. By linking all of these variables to stepwise regression, we identify the best variables influencing the prediction of the variable. Finally, we enter the selected variables as inputs to the artificial neural network. In other words, we want to call this whole prediction process the "ARIMA_Stepwise Regression_Neural Network" model and try to predict the price of gold in international financial markets. This approach is expected to be able to be used to predict the types of stocks, commodities, currency pairs, financial market indicators, and other items used in local and international financial markets. Moreover, a comparison between the results of this method and time series methods is also expressed. Finally, based on the results, it can be seen that the resulting hybrid model has the highest accuracy compared to the time series method, regression, and stepwise regression.
Via

May 03, 2025
Abstract:The sensitivity to input parameters and lack of flexibility limits the traditional Mean-Variance model. In contrast, the Black-Litterman model has attracted widespread attention by integrating market equilibrium returns with investors' subjective views. This paper proposes a novel hybrid deep learning model combining Singular Spectrum analysis (SSA), Multivariate Aligned Empirical Mode Decomposition (MA-EMD), and Temporal Convolutional Networks (TCNs), aiming to improve the prediction accuracy of asset prices and thus enhance the ability of the Black-Litterman model to generate subjective views. Experimental results show that noise reduction pre-processing can improve the model's accuracy, and the prediction performance of the proposed model is significantly better than that of three multivariate decomposition benchmark models. We construct an investment portfolio by using 20 representative stocks from the NASDAQ 100 index. By combining the hybrid forecasting model with the Black-Litterman model, the generated investment portfolio exhibits better returns and risk control capabilities than the Mean-Variance, Equal-Weighted, and Market-Weighted models in the short holding period.
Via

Apr 26, 2025
Abstract:This paper investigates the structural dynamics of stock market volatility through the Financial Chaos Index, a tensor- and eigenvalue-based measure designed to capture realized volatility via mutual fluctuations among asset prices. Motivated by empirical evidence of regime-dependent volatility behavior and perceptual time dilation during financial crises, we develop a regime-switching framework based on the Modified Lognormal Power-Law distribution. Analysis of the FCIX from January 1990 to December 2023 identifies three distinct market regimes, low-chaos, intermediate-chaos, and high-chaos, each characterized by differing levels of systemic stress, statistical dispersion and persistence characteristics. Building upon the segmented regime structure, we further examine the informational forces that shape forward-looking market expectations. Using sentiment-based predictors derived from the Equity Market Volatility tracker, we employ an elastic net regression model to forecast implied volatility, as proxied by the VIX index. Our findings indicate that shifts in macroeconomic, financial, policy, and geopolitical uncertainty exhibit strong predictive power for volatility dynamics across regimes. Together, these results offer a unified empirical perspective on how systemic uncertainty governs both the realized evolution of financial markets and the anticipatory behavior embedded in implied volatility measures.
Via

Apr 25, 2025
Abstract:This paper introduces an open-source and reproducible implementation of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) Networks for time series forecasting. We evaluated LSTM and GRU networks because of their performance reported in related work. We describe our method and its results on two datasets. The first dataset is the S&P BSE BANKEX, composed of stock time series (closing prices) of ten financial institutions. The second dataset, called Activities, comprises ten synthetic time series resembling weekly activities with five days of high activity and two days of low activity. We report Root Mean Squared Error (RMSE) between actual and predicted values, as well as Directional Accuracy (DA). We show that a single time series from a dataset can be used to adequately train the networks if the sequences in the dataset contain patterns that repeat, even with certain variation, and are properly processed. For 1-step ahead and 20-step ahead forecasts, LSTM and GRU networks significantly outperform a baseline on the Activities dataset. The baseline simply repeats the last available value. On the stock market dataset, the networks perform just like the baseline, possibly due to the nature of these series. We release the datasets used as well as the implementation with all experiments performed to enable future comparisons and to make our research reproducible.
* Eng. Proc. 2022, 18(1), 30
* 12 pages
Via

Apr 18, 2025
Abstract:In this paper, we explore the application of Permutation Decision Trees (PDT) and strategic trailing for predicting stock market movements and executing profitable trades in the Indian stock market. We focus on high-frequency data using 5-minute candlesticks for the top 50 stocks listed in the NIFTY 50 index. We implement a trading strategy that aims to buy stocks at lower prices and sell them at higher prices, capitalizing on short-term market fluctuations. Due to regulatory constraints in India, short selling is not considered in our strategy. The model incorporates various technical indicators and employs hyperparameters such as the trailing stop-loss value and support thresholds to manage risk effectively. Our results indicate that the proposed trading bot has the potential to outperform the market average and yield returns higher than the risk-free rate offered by 10-year Indian government bonds. We trained and tested data on a 60 day dataset provided by Yahoo Finance. Specifically, 12 days for testing and 48 days for training. Our bot based on permutation decision tree achieved a profit of 1.3468 % over a 12-day testing period, where as a bot based on LSTM gave a return of 0.1238 % over a 12-day testing period and a bot based on RNN gave a return of 0.3096 % over a 12-day testing period. All of the bots outperform the buy-and-hold strategy, which resulted in a loss of 2.2508 %.
* 17 pages, 7 figures
Via

Apr 18, 2025
Abstract:Financial prediction is a complex and challenging task of time series analysis and signal processing, expected to model both short-term fluctuations and long-term temporal dependencies. Transformers have remarkable success mostly in natural language processing using attention mechanism, which also influenced the time series community. The ability to capture both short and long-range dependencies helps to understand the financial market and to recognize price patterns, leading to successful applications of Transformers in stock prediction. Although, the previous research predominantly focuses on individual features and singular predictions, that limits the model's ability to understand broader market trends. In reality, within sectors such as finance and technology, companies belonging to the same industry often exhibit correlated stock price movements. In this paper, we develop a novel neural network architecture by integrating Time2Vec with the Encoder of the Transformer model. Based on the study of different markets, we propose a novel correlation feature selection method. Through a comprehensive fine-tuning of multiple hyperparameters, we conduct a comparative analysis of our results against benchmark models. We conclude that our method outperforms other state-of-the-art encoding methods such as positional encoding, and we also conclude that selecting correlation features enhance the accuracy of predicting multiple stock prices.
* 5 pages, currently under review at Eusipco 2025
Via

Apr 18, 2025
Abstract:Accurate financial market forecasting requires diverse data sources, including historical price trends, macroeconomic indicators, and financial news, each contributing unique predictive signals. However, existing methods often process these modalities independently or fail to effectively model their interactions. In this paper, we introduce Cross-Modal Temporal Fusion (CMTF), a novel transformer-based framework that integrates heterogeneous financial data to improve predictive accuracy. Our approach employs attention mechanisms to dynamically weight the contribution of different modalities, along with a specialized tensor interpretation module for feature extraction. To facilitate rapid model iteration in industry applications, we incorporate a mature auto-training scheme that streamlines optimization. When applied to real-world financial datasets, CMTF demonstrates improvements over baseline models in forecasting stock price movements and provides a scalable and effective solution for cross-modal integration in financial market prediction.
* 10 pages, 2 figures
Via

Apr 12, 2025
Abstract:Predicting stock market prices following corporate earnings calls remains a significant challenge for investors and researchers alike, requiring innovative approaches that can process diverse information sources. This study investigates the impact of corporate earnings calls on stock prices by introducing a multi-modal predictive model. We leverage textual data from earnings call transcripts, along with images and tables from accompanying presentations, to forecast stock price movements on the trading day immediately following these calls. To facilitate this research, we developed the MiMIC (Multi-Modal Indian Earnings Calls) dataset, encompassing companies representing the Nifty 50, Nifty MidCap 50, and Nifty Small 50 indices. The dataset includes earnings call transcripts, presentations, fundamentals, technical indicators, and subsequent stock prices. We present a multimodal analytical framework that integrates quantitative variables with predictive signals derived from textual and visual modalities, thereby enabling a holistic approach to feature representation and analysis. This multi-modal approach demonstrates the potential for integrating diverse information sources to enhance financial forecasting accuracy. To promote further research in computational economics, we have made the MiMIC dataset publicly available under the CC-NC-SA-4.0 licence. Our work contributes to the growing body of literature on market reactions to corporate communications and highlights the efficacy of multi-modal machine learning techniques in financial analysis.
Via

Apr 14, 2025
Abstract:Fluctuations in stock prices are influenced by a complex interplay of factors that go beyond mere historical data. These factors, themselves influenced by external forces, encompass inter-stock dynamics, broader economic factors, various government policy decisions, outbreaks of wars, etc. Furthermore, all of these factors are dynamic and exhibit changes over time. In this paper, for the first time, we tackle the forecasting problem under external influence by proposing learning mechanisms that not only learn from historical trends but also incorporate external knowledge from temporal knowledge graphs. Since there are no such datasets or temporal knowledge graphs available, we study this problem with stock market data, and we construct comprehensive temporal knowledge graph datasets. In our proposed approach, we model relations on external temporal knowledge graphs as events of a Hawkes process on graphs. With extensive experiments, we show that learned dynamic representations effectively rank stocks based on returns across multiple holding periods, outperforming related baselines on relevant metrics.
Via

Apr 04, 2025
Abstract:This study investigates enhancing option pricing by extending the Black-Scholes model to include stochastic volatility and interest rate variability within the Partial Differential Equation (PDE). The PDE is solved using the finite difference method. The extended Black-Scholes model and a machine learning-based LSTM model are developed and evaluated for pricing Google stock options. Both models were backtested using historical market data. While the LSTM model exhibited higher predictive accuracy, the finite difference method demonstrated superior computational efficiency. This work provides insights into model performance under varying market conditions and emphasizes the potential of hybrid approaches for robust financial modeling.
* 7 pages, 3 figures
Via
