Stock market prediction is the process of forecasting the future performance of financial markets using machine learning models.
This paper addresses stock price movement prediction by leveraging LLM-based news sentiment analysis. Earlier works have largely focused on proposing and assessing sentiment analysis models and stock movement prediction methods, however, separately. Although promising results have been achieved, a clear and in-depth understanding of the benefit of the news sentiment to this task, as well as a comprehensive assessment of different architecture types in this context, is still lacking. Herein, we conduct an evaluation study that compares 3 different LLMs, namely, DeBERTa, RoBERTa and FinBERT, for sentiment-driven stock prediction. Our results suggest that DeBERTa outperforms the other two models with an accuracy of 75% and that an ensemble model that combines the three models can increase the accuracy to about 80%. Also, we see that sentiment news features can benefit (slightly) some stock market prediction models, i.e., LSTM-, PatchTST- and tPatchGNN-based classifiers and PatchTST- and TimesNet-based regression tasks models.
Stock market price prediction is a significant interdisciplinary research domain that depends at the intersection of finance, statistics, and economics. Forecasting Accurately predicting stock prices has always been a focal point for various researchers. However, existing statistical approaches for time-series prediction often fail to effectively forecast the probability range of future stock prices. Hence, to solve this problem, the Neural Prophet with a Deep Neural Network (NP-DNN) is proposed to predict stock market prices. The preprocessing technique used in this research is Z-score normalization, which normalizes stock price data by removing scale differences, making patterns easier to detect. Missing value imputation fills gaps in historical data, enhancing the models use of complete information for more accurate predictions. The Multi-Layer Perceptron (MLP) learns complex nonlinear relationships among stock market prices and extracts hidden patterns from the input data, thereby creating meaningful feature representations for better prediction accuracy. The proposed NP-DNN model achieved an accuracy of 99.21% compared with other approaches using the Fused Large Language Model. Keywords: deep neural network, forecasting stock prices, multi-layer perceptron, neural prophet, stock market price prediction.
This study develops a robust machine learning framework for one-step-ahead forecasting of daily log-returns in the Nepal Stock Exchange (NEPSE) Index using the XGBoost regressor. A comprehensive feature set is engineered, including lagged log-returns (up to 30 days) and established technical indicators such as short- and medium-term rolling volatility measures and the 14-period Relative Strength Index. Hyperparameter optimization is performed using Optuna with time-series cross-validation on the initial training segment. Out-of-sample performance is rigorously assessed via walk-forward validation under both expanding and fixed-length rolling window schemes across multiple lag configurations, simulating real-world deployment and avoiding lookahead bias. Predictive accuracy is evaluated using root mean squared error, mean absolute error, coefficient of determination (R-squared), and directional accuracy on both log-returns and reconstructed closing prices. Empirical results show that the optimal configuration, an expanding window with 20 lags, outperforms tuned ARIMA and Ridge regression benchmarks, achieving the lowest log-return RMSE (0.013450) and MAE (0.009814) alongside a directional accuracy of 65.15%. While the R-squared remains modest, consistent with the noisy nature of financial returns, primary emphasis is placed on relative error reduction and directional prediction. Feature importance analysis and visual inspection further enhance interpretability. These findings demonstrate the effectiveness of gradient boosting ensembles in modeling nonlinear dynamics in volatile emerging market time series and establish a reproducible benchmark for NEPSE Index forecasting.
Financial sentiment analysis plays a crucial role in informing investment decisions, assessing market risk, and predicting stock price trends. Existing works in financial sentiment analysis have not considered the impact of stock prices or market feedback on sentiment analysis. In this paper, we propose an adaptive framework that integrates large language models (LLMs) with real-world stock market feedback to improve sentiment classification in the context of the Indian stock market. The proposed methodology fine-tunes the LLaMA 3.2 3B model using instruction-based learning on the SentiFin dataset. To enhance sentiment predictions, a retrieval-augmented generation (RAG) pipeline is employed that dynamically selects multi-source contextual information based on the cosine similarity of the sentence embeddings. Furthermore, a feedback-driven module is introduced that adjusts the reliability of the source by comparing predicted sentiment with actual next-day stock returns, allowing the system to iteratively adapt to market behavior. To generalize this adaptive mechanism across temporal data, a reinforcement learning agent trained using proximal policy optimization (PPO) is incorporated. The PPO agent learns to optimize source weighting policies based on cumulative reward signals from sentiment-return alignment. Experimental results on NIFTY 50 news headlines collected from 2024 to 2025 demonstrate that the proposed system significantly improves classification accuracy, F1-score, and market alignment over baseline models and static retrieval methods. The results validate the potential of combining instruction-tuned LLMs with dynamic feedback and reinforcement learning for robust, market-aware financial sentiment modeling.




This paper is about predicting the movement of stock consist of S&P 500 index. Historically there are many approaches have been tried using various methods to predict the stock movement and being used in the market currently for algorithm trading and alpha generating systems using traditional mathematical approaches [1, 2]. The success of artificial neural network recently created a lot of interest and paved the way to enable prediction using cutting-edge research in the machine learning and deep learning. Some of these papers have done a great job in implementing and explaining benefits of these new technologies. Although most these papers do not go into the complexity of the financial data and mostly utilize single dimension data, still most of these papers were successful in creating the ground for future research in this comparatively new phenomenon. In this paper, I am trying to use multivariate raw data including stock split/dividend events (as-is) present in real-world market data instead of engineered financial data. Convolution Neural Network (CNN), the best-known tool so far for image classification, is used on the multi-dimensional stock numbers taken from the market mimicking them as a vector of historical data matrices (read images) and the model achieves promising results. The predictions can be made stock by stock, i.e., a single stock, sector-wise or for the portfolio of stocks.
Accurate forecasting of financial markets remains a long-standing challenge due to complex temporal and often latent dependencies, non-linear dynamics, and high volatility. Building on our earlier recurrent neural network framework, we present an enhanced StockBot architecture that systematically evaluates modern attention-based, convolutional, and recurrent time-series forecasting models within a unified experimental setting. While attention-based and transformer-inspired models offer increased modeling flexibility, extensive empirical evaluation reveals that a carefully constructed vanilla LSTM consistently achieves superior predictive accuracy and more stable buy/sell decision-making when trained under a common set of default hyperparameters. These results highlight the robustness and data efficiency of recurrent sequence models for financial time-series forecasting, particularly in the absence of extensive hyperparameter tuning or the availability of sufficient data when discretized to single-day intervals. Additionally, these results underscore the importance of architectural inductive bias in data-limited market prediction tasks.
The global gold market, by its fundamentals, has long been home to many financial institutions, banks, governments, funds, and micro-investors. Due to the inherent complexity and relationship between important economic and political components, accurate forecasting of financial markets has always been challenging. Therefore, providing a model that can accurately predict the future of the markets is very important and will be of great benefit to their developers. In this paper, an artificial intelligence-based algorithm for daily and monthly gold forecasting is presented. Two Long short-term memory (LSTM) networks are responsible for daily and monthly forecasting, the results of which are integrated into a Multilayer perceptrons (MLP) network and provide the final forecast of the next day prices. The algorithm forecasts the highest, lowest, and closing prices on the daily and monthly time frame. Based on these forecasts, a trading strategy for live market trading was developed, according to which the proposed model had a return of 171% in three months. Also, the number of internal neurons in each network is optimized by the Gray Wolf optimization (GWO) algorithm based on the least RMSE error. The dataset was collected between 2010 and 2021 and includes data on macroeconomic, energy markets, stocks, and currency status of developed countries. Our proposed LSTM-MLP model predicted the daily closing price of gold with the Mean absolute error (MAE) of $ 0.21 and the next month's price with $ 22.23.
A growing empirical literature suggests that equity-premium predictability is state dependent, with much of the forecasting power concentrated around recessionary periods \parencite{Henkel2011,DanglHalling2012,Devpura2018}. I study U.S. stock return predictability across economic regimes and document strong evidence of time-varying expected returns across both expansionary and contractionary states. I contribute in two ways. First, I introduce a state-switching predictive regression in which the market state is defined in real time using the slope of the yield curve. Relative to the standard one-state predictive regression, the state-switching specification increases both in-sample and out-of-sample performance for the set of popular predictors considered by \textcite{WelchGoyal2008}, improving the out-of-sample performance of most predictors in economically meaningful ways. Second, I propose a new aggregate predictor, the Aligned Economic Index, constructed via partial least squares (PLS). Under the state-switching model, the Aligned Economic Index exhibits statistically and economically significant predictive power in sample and out of sample, and it outperforms widely used benchmark predictors and alternative predictor-combination methods.
Stock market prediction is a long-standing challenge in finance, as accurate forecasts support informed investment decisions. Traditional models rely mainly on historical prices, but recent work shows that financial news can provide useful external signals. This paper investigates a multimodal approach that integrates companies' news articles with their historical stock data to improve prediction performance. We compare a Graph Neural Network (GNN) model with a baseline LSTM model. Historical data for each company is encoded using an LSTM, while news titles are embedded with a language model. These embeddings form nodes in a heterogeneous graph, and GraphSAGE is used to capture interactions between articles, companies, and industries. We evaluate two targets: a binary direction-of-change label and a significance-based label. Experiments on the US equities and Bloomberg datasets show that the GNN outperforms the LSTM baseline, achieving 53% accuracy on the first target and a 4% precision gain on the second. Results also indicate that companies with more associated news yield higher prediction accuracy. Moreover, headlines contain stronger predictive signals than full articles, suggesting that concise news summaries play an important role in short-term market reactions.




Understanding how prices evolve over time often requires peeling back the layers of market noise to identify clear, structural behavior. Many of the tools commonly used for this purpose technical indicators, chart heuristics, or even sophisticated predictive models leave important questions unanswered. Technical indicators depend on platform-specific rules, and predictive systems typically offer little in terms of explanation. In settings that demand transparency or auditability, this poses a significant challenge. We introduce the Stock Pattern Assistant (SPA), a deterministic framework designed to extract monotonic price runs, attach relevant public events through a symmetric correlation window, and generate explanations that are factual, historical, and guardrailed. SPA relies only on daily OHLCV data and a normalized event stream, making the pipeline straight-forward to audit and easy to reproduce. To illustrate SPA's behavior in practice, we evaluate it across four equities-AAPL, NVDA, SCHW, and PGR-chosen to span a range of volatility regimes and sector characteristics. Although the evaluation period is modest, the results demonstrate how SPA consistently produces stable structural decompositions and contextual narratives. Ablation experiments further show how deterministic segmentation, event alignment, and constrained explanation each contribute to interpretability. SPA is not a forecasting system, nor is it intended to produce trading signals. Its value lies in offering a transparent, reproducible view of historical price structure that can complement analyst workflows, risk reviews, and broader explainable-AI pipelines.