Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, highlighting the critical need for efficient and accurate diagnostic tools. Electrocardiograms (ECGs) are indispensable in diagnosing various heart conditions; however, their manual interpretation is time-consuming and error-prone. In this paper, we propose xLSTM-ECG, a novel approach that leverages an extended Long Short-Term Memory (xLSTM) network for multi-label classification of ECG signals, using the PTB-XL dataset. To the best of our knowledge, this work represents the first design and application of xLSTM modules specifically adapted for multi-label ECG classification. Our method employs a Short-Time Fourier Transform (STFT) to convert time-series ECG waveforms into the frequency domain, thereby enhancing feature extraction. The xLSTM architecture is specifically tailored to address the complexities of 12-lead ECG recordings by capturing both local and global signal features. Comprehensive experiments on the PTB-XL dataset reveal that our model achieves strong multi-label classification performance, while additional tests on the Georgia 12-Lead dataset underscore its robustness and efficiency. This approach significantly improves ECG classification accuracy, thereby advancing clinical diagnostics and patient care. The code will be publicly available upon acceptance.