This letter proposes a novel user localization and channel estimation framework for pinching-antenna systems (PASS), where pinching antennas are grouped into subarrays on each waveguide to cooperatively estimate user/scatterer locations, thus reconstructing channels. Both single-waveguide (SW) and multi-waveguide (MW) structures are considered. SW consists of multiple alternatingly activated subarrays, while MW deploys one subarray on each waveguide to enable concurrent subarray measurements. For the 2D scenarios with a fixed user/scatter height, an orthogonal matching pursuit-based geometry-consistent localization (OMP-GCL) algorithm is proposed, which leverages inter-subarray geometric relationships and compressed sensing for precise estimation. Theoretical analysis on Cramér-Rao lower bound (CRLB) demonstrates that: 1) The estimation accuracy can be improved by increasing the geometric diversity through multi-subarray deployment; and 2) SW provides a limited geometric diversity within a $180^\circ$ half space and leads to angle ambiguity, while MW enables full-space observations and reduces overheads. The OMP-GCL algorithm is further extended to 3D scenarios, where user and scatter heights are also estimated. Numerical results validate the theoretical analysis, and verify that MW achieves centimeter- and decimeter-level localization accuracy in 2D and 3D scenarios with only three waveguides.