Continual Test Time Adaptation (CTTA) is a task that requires a source pre-trained model to continually adapt to new scenarios with changing target distributions. Existing CTTA methods primarily focus on mitigating the challenges of catastrophic forgetting and error accumulation. Though there have been emerging methods based on forgetting adaptation with parameter-efficient fine-tuning, they still struggle to balance competitive performance and efficient model adaptation, particularly in complex tasks like semantic segmentation. In this paper, to tackle the above issues, we propose a novel pipeline, Orthogonal Projection Subspace to aggregate online Prior-knowledge, dubbed OoPk. Specifically, we first project a tuning subspace orthogonally which allows the model to adapt to new domains while preserving the knowledge integrity of the pre-trained source model to alleviate catastrophic forgetting. Then, we elaborate an online prior-knowledge aggregation strategy that employs an aggressive yet efficient image masking strategy to mimic potential target dynamism, enhancing the student model's domain adaptability. This further gradually ameliorates the teacher model's knowledge, ensuring high-quality pseudo labels and reducing error accumulation. We demonstrate our method with extensive experiments that surpass previous CTTA methods and achieve competitive performances across various continual TTA benchmarks in semantic segmentation tasks.