Watermarking offers a promising solution for GenAI providers to establish the provenance of their generated content. A watermark is a hidden signal embedded in the generated content, whose presence can later be verified using a secret watermarking key. A threat to GenAI providers are \emph{watermark stealing} attacks, where users forge a watermark into content that was \emph{not} generated by the provider's models without access to the secret key, e.g., to falsely accuse the provider. Stealing attacks collect \emph{harmless} watermarked samples from the provider's model and aim to maximize the expected success rate of generating \emph{harmful} watermarked samples. Our work focuses on mitigating stealing attacks while treating the underlying watermark as a black-box. Our contributions are: (i) Proposing a multi-key extension to mitigate stealing attacks that can be applied post-hoc to any watermarking method across any modality. (ii) We provide theoretical guarantees and demonstrate empirically that our method makes forging substantially less effective across multiple datasets, and (iii) we formally define the threat of watermark forging as the task of generating harmful, watermarked content and model this threat via security games.