We provide the first study of the problem of finding differentially private (DP) second-order stationary points (SOSP) in stochastic (non-convex) minimax optimization. Existing literature either focuses only on first-order stationary points for minimax problems or on SOSP for classical stochastic minimization problems. This work provides, for the first time, a unified and detailed treatment of both empirical and population risks. Specifically, we propose a purely first-order method that combines a nested gradient descent--ascent scheme with SPIDER-style variance reduction and Gaussian perturbations to ensure privacy. A key technical device is a block-wise ($q$-period) analysis that controls the accumulation of stochastic variance and privacy noise without summing over the full iteration horizon, yielding a unified treatment of both empirical-risk and population formulations. Under standard smoothness, Hessian-Lipschitzness, and strong concavity assumptions, we establish high-probability guarantees for reaching an $(α,\sqrt{ρ_Φα})$-approximate second-order stationary point with $α= \mathcal{O}( (\frac{\sqrt{d}}{n\varepsilon})^{2/3})$ for empirical risk objectives and $\mathcal{O}(\frac{1}{n^{1/3}} + (\frac{\sqrt{d}}{n\varepsilon})^{1/2})$ for population objectives, matching the best known rates for private first-order stationarity.