Multimodal methods are widely used in rice deterioration detection, which exhibit limited capability in representing and extracting fine-grained abnormal features. Moreover, these methods rely on devices, such as hyperspectral cameras and mass spectrometers, increasing detection costs and prolonging data acquisition time. To address these issues, we propose a feature recalibration based olfactory-visual multimodal model for fine-grained rice deterioration detection. The fine-grained deterioration embedding constructor (FDEC) is proposed to reconstruct the labeled multimodal embedded-feature dataset, enhancing sample representation. The fine-grained deterioration recalibration attention network (FDRA-Net) is proposed to emphasize signal variations and increase sensitivity to fine-grained deterioration on the rice surface. Experiments show that the proposed method achieves a classification accuracy of 99.89%. Compared with state-of-the-art methods, the detection accuracy is improved and the procedure is simplified. Furthermore, field detection demonstrates the advantages of accuracy and operational simplicity. The proposed method can also be extended to other agrifood in agriculture and food industry.