Crop type maps from satellite remote sensing are important tools for food security, local livelihood support and climate change mitigation in smallholder regions of the world, but most satellite-based methods are not well suited to smallholder conditions. To address this gap, we establish a four-part criteria for a useful embedding-based approach consisting of 1) performance, 2) plausibility, 3) transferability and 4) accessibility and evaluate geospatial foundation model (FM) embeddings -based approaches using TESSERA and AlphaEarth against current baseline methods for a region in the groundnut basin of Senegal. We find that the TESSERA -based approach to land cover and crop type mapping fulfills the selection criteria best, and in one temporal transfer example shows 28% higher accuracy compared to the next best method. These results indicate that TESSERA embeddings are an effective approach for crop type classification and mapping tasks in Senegal.