Integrated sensing and communication (ISAC) systems are key enablers of future networks but raise significant security concerns. In this realm, the emergence of malicious ISAC systems has amplified the need for authorized parties to legitimately monitor suspicious communication links and protect legitimate targets from potential detection or exploitation by malicious foes. In this paper, we propose a new wireless proactive monitoring paradigm, where a legitimate monitor intercepts a suspicious communication link while performing cognitive jamming to enhance the monitoring success probability (MSP) and simultaneously safeguard the target. To this end, we derive closed-form expressions of the signal-to-interference-plus-noise-ratio (SINR) at the user (UE), sensing access points (S-APs), and an approximating expression of the SINR at the proactive monitor. Moreover, we propose an optimization technique under which the legitimate monitor minimizes the success detection probability (SDP) of the legitimate target, by optimizing the jamming power allocation over both communication and sensing channels subject to total power constraints and monitoring performance requirement. To enhance the monitor's longevity and reduce the risk of detection by malicious ISAC systems, we further propose an adaptive power allocation scheme aimed at minimizing the total transmit power at the monitor while meeting a pre-selected sensing SINR threshold and ensuring successful monitoring. Our numerical results show that the proposed algorithm significantly compromises the sensing and communication performance of malicious ISAC.