Inference-time reasoning scaling has significantly advanced the capabilities of Large Language Models (LLMs) in complex problem-solving. A prevalent approach involves external search guided by Process Reward Models (PRMs). However, a fundamental limitation of this framework is the epistemic uncertainty of PRMs when evaluating reasoning paths that deviate from their training distribution. In this work, we conduct a systematic analysis of this challenge. We first provide empirical evidence that PRMs exhibit high uncertainty and unreliable scoring on out-of-distribution (OOD) samples. We then establish a theoretical framework proving that while standard search incurs linear regret accumulation, an uncertainty-aware strategy can achieve sublinear regret. Motivated by these findings, we propose Uncertainty-Aware Tree Search (UATS), a unified method that estimates uncertainty via Monte Carlo Dropout and dynamically allocates compute budget using a reinforcement learning-based controller. Extensive experiments demonstrate that our approach effectively mitigates the impact of OOD errors.