Although generative recommenders demonstrate improved performance with longer sequences, their real-time deployment is hindered by substantial computational costs. To address this challenge, we propose a simple yet effective method for compressing long-term user histories by leveraging inherent item categorical features, thereby preserving user interests while enhancing efficiency. Experiments on two large-scale datasets demonstrate that, compared to the influential HSTU model, our approach achieves up to a 6x reduction in computational cost and up to 39% higher accuracy at comparable cost (i.e., similar sequence length).