In this paper, we investigate a movable antenna (MA) enabled anti-jamming optimization problem, where a legitimate uplink system is exposed to multiple jammers with unknown jamming channels. To enhance the anti-jamming capability of the considered system, an MA array is deployed at the receiver, and the antenna positions and the minimum-variance distortionless-response (MVDR) receive beamformer are jointly optimized to maximize the output signal-to-interference-plus-noise ratio (SINR). The main challenge arises from the fact that the interference covariance matrix is unknown and nonlinearly dependent on the antenna positions. To overcome these issues, we propose a surrogate objective by replacing the unknown covariance with the sample covariance evaluated at the current antenna position anchor. Under a two-timescale framework, the surrogate objective is updated once per block (contains multiple snapshots) at the current anchor position, while the MVDR beamformer is adapted on a per-snapshot basis. We establish a local bound on the discrepancy between the surrogate and the true objective by leveraging matrix concentration inequalities, and further prove that a natural historical-averaging surrogate suffers from a non-vanishing geometric bias. Building on these insights, we develop a low-complexity projected trust-region (TR) surrogate optimization (PTRSO) algorithm that maintains the locality of each iteration via TR constraints and enforces feasibility through projection, which is guaranteed to converge to a stationary point near the anchor. Numerical results verify the effectiveness and robustness of the proposed PTRSO algorithm, which consistently achieves higher output SINR than existing baselines.