Abstract:Recent advances in Knowledge Editing (KE), particularly Rank-One Model Editing (ROME), show superior efficiency over fine-tuning and in-context learning for updating single-hop facts in transformers. However, these methods face significant challenges when applied to multi-hop reasoning tasks requiring knowledge chaining. In this work, we study the effect of editing knowledge with ROME on different layer depths and identify three key failure modes. First, the "hopping-too-late" problem occurs as later layers lack access to necessary intermediate representations. Second, generalization ability deteriorates sharply when editing later layers. Third, the model overfits to edited knowledge, incorrectly prioritizing edited-hop answers regardless of context. To mitigate the issues of "hopping-too-late" and generalisation decay, we propose Redundant Editing, a simple yet effective strategy that enhances multi-hop reasoning. Our experiments demonstrate that this approach can improve accuracy on 2-hop questions by at least 15.5 percentage points, representing a 96% increase over the previous single-edit strategy, while trading off some specificity and language naturalness.
Abstract:Developing high-fidelity, interactive digital twins is crucial for enabling closed-loop motion planning and reliable real-world robot execution, which are essential to advancing sim-to-real transfer. However, existing approaches often suffer from slow reconstruction, limited visual fidelity, and difficulties in converting photorealistic models into planning-ready collision geometry. We present a practical framework that constructs high-quality digital twins within minutes from sparse RGB inputs. Our system employs 3D Gaussian Splatting (3DGS) for fast, photorealistic reconstruction as a unified scene representation. We enhance 3DGS with visibility-aware semantic fusion for accurate 3D labelling and introduce an efficient, filter-based geometry conversion method to produce collision-ready models seamlessly integrated with a Unity-ROS2-MoveIt physics engine. In experiments with a Franka Emika Panda robot performing pick-and-place tasks, we demonstrate that this enhanced geometric accuracy effectively supports robust manipulation in real-world trials. These results demonstrate that 3DGS-based digital twins, enriched with semantic and geometric consistency, offer a fast, reliable, and scalable path from perception to manipulation in unstructured environments.